• Title/Summary/Keyword: Structure safety monitoring

Search Result 250, Processing Time 0.025 seconds

A Methodology for Evaluating Vehicle Driving Safety based on the Analysis of Interactions With Roads and Adjacent Vehicles (도로 및 인접차량과의 상호작용분석을 통한 차량의 주행안전성 평가기법 개발 연구)

  • PARK, Jaehong;OH, Cheol;YUN, Dukgeun
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.116-128
    • /
    • 2017
  • Traffic accidents can be defined as a physical collision event of vehicles occurred instantaneously when drivers do not perceive the surrounding vehicles and roadway environments properly. Therefore, detecting the high potential events that cause traffic accidents with monitoring the interactions among the surroundings continuously by driver is the prerequisite for prevention the traffic accidents. For the analysis, basic data were collected to analyze interactions using a test vehicle which is equipped the GPS(Global Positioning System)-IMU(Inertial Measurement Unit), camera, radar and RiDAR. From the collected data, highway geometric information and the surrounding traffic situation were analyzed and then safety evaluation algorithm for driving vehicle was developed. In order to detect a dangerous event of interaction with surrounding vehicles, locations and speed data of surrounding vehicles acquired from the radar sensor were used. Using the collected data, the tangent and curve section were divided and the driving safety evaluation algorithm which is considered the highway geometric characteristic were developed. This study also proposed an algorithm that can assess the possibility of collision against surrounding vehicles considering the characteristics of geometric road structure. The methodology proposed in this study is expected to be utilized in the fields of autonomous vehicles in the future since this methodology can assess the driving safety using collectible data from vehicle's sensors.

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

Study on Establishment of a Monitoring System for Long-term Behavior of Caisson Quay Wall (케이슨 안벽의 장기 거동 모니터링 시스템 구축 연구 )

  • Tae-Min Lee;Sung Tae Kim;Young-Taek Kim;Jiyoung Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.40-48
    • /
    • 2023
  • In this paper, a sensor-based monitoring system was established to analyze the long-term behavioral characteristics of the caisson quay wall, a representative structural type in port facilities. Data was collected over a period of approximately 10 months. Based on existing literature, anomalous behaviors of port facilities were classified, and a measurement system was selected to detect them. Monitoring systems were installed on-site to periodically collect data. The collected data was transmitted and stored on a server through LTE network. Considering the site conditions, inclinometers for measuring slope and crack meters for measuring spacing and settlement were installed. They were attached to two caissons for comparison between different caissons. The correlation among measured data, temperature, and tidal level was examined. The temperature dominated the spacing and settlement data. When the temperature changed by approximately 50 degrees, the spacing changed by 10 mm, the settlement by 2 mm, and the slope by 0.1 degrees. On the other hand, there was no clear relationship with tidal level, indicating a need for more in-depth analysis in the future. Based on the characteristics of these collected database, it will be possible to develop algorithms for detecting abnormal states in gravity-type quay walls. The acquisition and analysis of long-term data enable to evaluate the safety and usability of structures in the event of disasters and emergencies.

Research on Wireless Sensor Network System Design for Safety Management of Marine Structures (선박 및 해양 구조물의 안전 관리를 위한 무선 센서 네트워크 시스템 설계에 관한 연구)

  • Han, Young-Soo;Lee, Kyung-Ho;Choi, Si-Young;Kim, Chung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.136-145
    • /
    • 2009
  • There are two purposes for the marine structures used for fossil fuel: transporting huge amounts of crude oil and petroleum products and producing petroleum resources on the ocean in an isolated operational environment. Both types of structures are exposed to dangerous situations by sea conditions. Such marine structures are greatly affected by ocean climate conditions and its changes. Because of such ocean climate changes, it has been necessary to monitor marine structures. This research discusses the difficulties with adopting a new methodology based on a ubiquitous sensor network and develops an optimized sensor network management system design for a marine structure.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Stability Estimation of NATM Tunnel due to Excavation using Back Analysis (역해석기법을 통한 NATM 터널의 안정성 평가)

  • Lee, Jae-Ho;Kim, Young-Su;Jin, Guang-Ril;Park, Jin-Kyu;Park, Si-Hyun;Choi, Chil-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.494-504
    • /
    • 2008
  • Successful design, construction and maintenance of NATM tunnel demands prediction, control, stability estimation and monitoring of surface settlement, gradient and ground displacement with high accuracy. Back analysis using measured data and forward analysis have been and are indispensable tools to achieve this goal. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the relation of critical strain and apparent Young's modulus. This paper performed the estimation of tunnel stability on construction. Firstly, the apparent Young's modulus concept and back analysis method is introduced for the assessment of tunnel safety during excavation a brief framework. Secondly, this paper deals with case study using "Apparent Young's modulus" and "Back analysis" for the purpose of estimating the stability of NATM tunnel in Korea. Finally, a general method that can be estimated the tunnel stability discussed by a flow chart.

  • PDF

Vulnerability and seismic improvement of architectural heritage: the case of Palazzo Murena

  • Liberotti, Riccardo;Cluni, Federico;Gusella, Vittorio
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.321-335
    • /
    • 2020
  • The aim of the present contribution is to consider and underline the essential interactions among the historical knowledge, the seismic vulnerability assessment, the investigation experimental tools, the preservation of the architectural quality and the strengthening design in regard to architectural heritage conservation. These topics are argued in relation to Palazzo Murena in Perugia, designed in the eighteenth century by the famous Architect Luigi Vanvitelli, and currently headquarters of the city's University. Based on the surveys and the visual inspections, a preliminary a priori global analysis has been performed by means of the FME method. The obtained results permitted to plan an experimental tests campaign inclusive of structural health monitoring. The new achieved "knowledge" of the building allowed to refine the seismic safety assessment. In particular it was highlighted that the "mezzanine floor" can be a vulnerable element of the building with the collapse of its masonry walls. Preserving the architectural characteristics, a local reinforcement intervention is proposed for the above-mentioned level; this consists of the application of plaster with FRCM, assuring an adequate strength, without burden the masonry structure with additional weight, and therefore a decreasing of the seismic vulnerability. The necessity to consider, in this ongoing research, other local mechanisms is highlighted in the unfolding of the last part of work.

The Design of Operation and Control Solution with Intelligent Inference Capability for IED based Digital Switchgear Panel (IED를 기반으로 하는 디지털 수배전반의 지적추론기반 운전제어 솔루션 설계)

  • Ko, Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.9
    • /
    • pp.351-358
    • /
    • 2006
  • In this paper, DSPOCS(Digital Switchgear-Panel Operation and Control Solution) is designed, which is the intelligent inference based operation and control solution to obtain the safety and reliability of electric power supply in substation based on IED. DSPOCS is designed as a scheduled monitoring and control task and a real-time alarm inference task, and is interlinked with BRES(Bus Reconfiguration Expert System) in the required case. The intelligent alarm inference task consists of the alarm knowledge generation part and the real-time pattern matching part. The alarm knowledge generation part generates automatically alarm knowledge from DB saves it in alarm knowledge base. On the other hand, the pattern matching part inferences the real-time event by comparing the real-time event information furnished from IEDs of substation with the patterns of the saved alarm knowledge base.; Especially, alarm knowledge base includes the knowledge patterns related with fault alarm, the overload alarm and the diagnosis alarm. In order to design the database independently in substation structure, busbar is represented as a connectivity node which makes the more generalized graph theory possible. Finally, DSPOCS is implemented in MS Visual $C^{++}$, MFC, the effectiveness and accuracy of the design is verified by simulation study to the typical distribution substation.

Implementation of the 50kW Utility Interconnected Photovoltaic System Simulator (50kW급 계통연계형 태양광발전시스템의 시뮬레이터 구현)

  • Jeong, Byeong-Ho;Park, Jeong-Min;Cho, Geum-Bae;Baek, Hyung-Lae;Chung, Soo-Bok
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.21-27
    • /
    • 2005
  • This paper summarizes the results of these efforts by offering a photovoltaic system structure in 50kW middle scale applications installed in Cho-sun University dormitory roof. The combination of photovoltaic system components are interconnected and system monitoring system will be summarized for the purpose of the increasing safety in this article. This paper describes configuration of utility interactive photovoltaic system which generated electric power supplies to dormitory. In order to installing the middle or large scale photovoltaic system, It must investigated the optimal design of system, compute quantity of power generation, economic rate of return and so on. In this paper represent 50kW utility photovoltaic system examination and developed simulation results. The performance of photovoltaic system has been evaluated and analyzed with simulation. The results obtained in this research will be much useful to prior investigation for installing utility interactive photovoltaic system.

Implementation of the 50kW Utility Interconnected PV System Simulator and the Study of Financial Analysis (50kw급 PV시스템 시뮬레이터의 구현 및 경제성 분석에 관한 연구)

  • Lee, K.Y.;Kim, Y.G.;Shin, S.D.;Kim, H.G.;Chun, H.S.;Kim, B.C.;Min, W.K.;Kim, N.O.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11b
    • /
    • pp.157-159
    • /
    • 2008
  • This paper summarizes the results of these efforts by offering a photovoltaic system structure in 50kW. The combination of photovoltaic system components are interconnected and system monitoring system will be summarized for the purpose of the increasing safety in this article. This paper describes configuration of utility interactive photovoltaic system which generated electric power supplies to dormitory. In order to installing the middle or large scale photovoltaic system, It must investigated the optimal design of system, compute quantity of power generation, economic rate of return and so on. In this paper represent 50kW utility photovoltaic system examination, developed simulation results and financial analysis. The performance of photovoltaic system has been evaluated, analyzed with simulation and financial analysis results. The results obtained in this research will be much useful to prior investigation for installing utility interactive photovoltaic system.

  • PDF