• Title/Summary/Keyword: Structure safety

Search Result 4,468, Processing Time 0.034 seconds

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

Design of Riser in 1MW OTEC system mounted on Floating Barge (해상 부유식 1MW 해수온도차발전 시스템의 라이저 설계)

  • Kwon, YongJu;Jung, DongHo;Kim, HyeonJu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • The design on a riser in 1MW OTEC system is performed. The minimum diameter of the riser is decided depending on intake quantity of deep-sea water to supply an OTEC cycle. An applicable pipe material is selected from analyzing the properties of commercial pipes. The selected HDPE pipe with the low density and strength is reinforced with a lumped block attached at the end of and wire ropes along the riser. A lumped block, connected to a floating structure by wire ropes, with 25% and 50% weight of a GFRP riser is designed to be attached the end of a riser. The structural safety of the HDPE riser with wire rope supporting axial loads induced by a lumped block is analyzed under the harsh ocean environmental condition near Hawaii ocean with the numerical method. The final dimension of the riser and accessories is determined considering the economic point of view. The designed riser will be applicable to the construction of the 1 MW OTEC pilot plant.

A Study on Segmentation Process of the K1 Reactor Vessel and Internals (K1 원자로 및 내부구조물 절단해체 공정에 대한 연구)

  • Hwang, Young Hwan;Hwang, Seokju;Hong, Sunghoon;Park, Kwang Soo;Kim, Nam-Kyun;Jung, Deok Woon;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.437-445
    • /
    • 2019
  • After the permanent shutdown of K1 in 2017, decommissioning processes have attracted great attention. According to the current decommissioning roadmap, the dismantling of the activated components of K1 may start in 2026, following the removal of its spent fuel. Since the reactor vessel (RV) and reactor vessel internal (RVI) of K1 contain massive components and are relatively highly activated, their decommissioning process should be conducted carefully in terms of radiological and industrial safety. For achieving maximum efficiency of nuclear waste management processes for K1, we present activation analysis of the segmentation process and waste classification of the RV and RVI components of K1. For RVI, the active fuel regions and some parts of the upper and lower active regions are classified as intermediate-level waste (ILW), while other components are classified as low-level waste (LLW). Due to the RVI's complex structure and high activation, we suggest various underwater segmentation techniques which are expected to reduce radiation exposure and generate approximately nine ILW and nineteen very low level waste (VLLW)/LLW packages. For RV, the active fuel region and other components are classified as LLW, VLLW, and clearance waste (CW). In this case, we suggest in-situ remote segmentation in air, which is expected to generate approximately forty-two VLLW/LLW packages.

Market Growth, Competition, and Distribution Structure in Major Cities of the East Sea Rim (환동해지역 거점도시에서의 시장성장과 경쟁 및 유통구조: 후쿠오카, 울산 및 옌지의 시장을 중심으로)

  • Choi, Young-Jin
    • Journal of Distribution Science
    • /
    • v.13 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • Purpose - This is a comparative study of the market development and characteristics of Ulsan in South Korea, Fukuoka in Japan, and Yanji in China, which are major East Sea Rim cities with adjacent areas of similar natural characteristics of the sea and the country. Particularly, it considers these aspects while focusing on the evolution of networks that appear in the distribution system and at the same time examining the institutions of market activation and regulations that are handled by the central and the local government and the changing logistics due to the development of transportation and the concern of food safety, using a meso-analysis approach. Research design, data, and methodology - The study used a historical and comparative approach with a focus on case studies. It made use of various materials such as local newspaper articles, reports, literature, interviews with experts, discussions with local merchants, discussions with customers, and so forth. Results - In the case of Fukuoka, from the 1960s, due to the entry of supermarkets, supermarkets expanded and they have now come to a dominant market position in the current market. They offer a convenient and comfortable environment while providing a large mall offering a variety of educational and cultural activities for customers to meet the customers' needs, such as the preferences of Korean tourists, who appear to prefer Japanese foods. The Fukuoka City Central Wholesale Market has been exporting fruits and vegetables as well as seafood products to Korea, China, and so forth. In the case of Ulsan, as in the early 2000s, due to the expansion of supermarkets, the traditional markets have been shrinking and further, the modernization of traditional markets was conducted under the auspices of the Small Business Administration. In addition to the large discount malls, the expansion of SSM is expected to further drive the small trader bay. Shopping malls, department stores, and traditional markets contend with each other in Yanji, China, but a large number of citizens appear to prefer traditional markets and imported milk in the supermarket after the melamine scandal in China. Recently, the WanYuan (萬源) wholesale market has been partially completed and made an attempt to become a logistics hub in Northeast Asia. Conclusions - For the development of Korea's retail industry, it is important to offer the government with proposals regarding desired regulation. On the other hand, in order to enable the business of traditional markets, it requires an association for cultural tourism. At present, it would be better to provide a venture fund for the youth rather than infrastructure support. This study emphasizes the importance of institutions and policy to develop networks in the East Sea Rim. Future studies should conduct a survey on customers, managers, and merchants more carefully and systematically to understand the market situation while considering the size of the city and its evolution of markets, as well as policies and institutions.

Methodology of Shape Design for Component Using Optimal Design System (최적설계 시스템을 이용한 부품에 대한 형상설계 방법론)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.672-679
    • /
    • 2018
  • This paper describes a methodology for shape design using an optimal design system, whereas generally a three dimensional analysis is required for such designs. An automatic finite element mesh generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code and a commercial solid modeler. Also, with the aid of multilayer neural networks, the present system allows us to automatically obtain a design window, in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed optimal design system is successfully applied to evaluate the structures that are used. This study used a stress gauge to measure the maximum stress affecting the parts of the side housing bracket which are most vulnerable to cracking. Thereafter, we used a tool to interpret the maximum stress value, while maintaining the same stress as that exerted on the spot. Furthermore, a stress analysis was performed with the typical shape maintained intact, SM490 used for the material and the minimizing weight safety coefficient set to 3, while keeping the maximum stress the same as or smaller than the allowable stress. In this paper, a side housing bracket with a comparably simple structure for 36 tons was optimized, however if the method developed in this study were applied to side housing brackets of different classes (tons), their quality would be greatly improved.

Identification of damage states and damge indices of single box tunnel from inelastic seismic analysis (비탄성 지진 해석을 통한 박스 터널의 손상 상태 및 손상 지수 규명)

  • Park, Duhee;Lee, Tae-Hyung;Kim, Hansup;Park, Jeong-Seon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • In a performance-based design, the structural safety is estimated from pre-defined damage states and corresponding damage indices. Both damage states and damage indices are well defined for above-ground structures, but very limited studies have been performed on underground structures. In this study, we define the damage states and damage indices of a cut-and-cover box tunnel which is one of typical structures used in metro systems, under a seismic excitation from a series of inelastic frame analyses. Three damage states are defined in terms of the number of plastic hinges that develop within the structure. The damage index is defined as the ratio of the elastic moment to the yield moment. Through use of the proposed index, the inelastic behavior and failure mechanism of box tunnels can be simulated and predicted through elastic analysis. In addition, the damage indices are linked to free-field shear strains. Because the free-field shear strain can be easily calculated from a 1D site response analysis, the proposed method can be readily used in practice. Further studies are needed to determine the range of shear strains and associated uncertainties for various types of tunnels and site profiles. However, the inter-linked platform of damage state - damage index - shear wave velocity - shear strain provides a novel approach for estimating the inelastic response of tunnels, and can be widely used in practice for seismic designs.

Study on the Behavior of Curved Track in Honam High-Speed Line considering the Running Performanace for HEMU 430-X (HEMU 430-X 주행특성을 고려한 호남고속철도 곡선궤도구조의 거동연구)

  • Kang, Yun-Suk;Um, Ki-Young;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4068-4076
    • /
    • 2013
  • The wheel-rail interaction forces are influenced by the velocity of vehicle, wheel load, alignment (curve radius, cant etc). For the safety of track structure, it is required to evaluate the influences for track and influential factors. Recently, the HEMU 430-X, which was developed by Next Generation High-Speed Rail Development R&D Project, achieved 421.4km/h in a test run of Daegu.Busan section of the Gyeongbu high speed rail on March in 2013. In the case of additional speed-up test on Test-Bed Section(Gongju.Jeongeup: KP 100~128km Osong starting point), the analysis of track forces is required for outer rail by the increase of dynamic force and centrifugal force of vehicle. In this paper, the vehicle speed variation on HSL line is evaluated by TPS analysis considering the tractive effort of HEMU 430-X, tested running resistance and alignment of Honam HSR. And the track forces are evaluated by centrifugal force and impact factor on curved track.

A Vibration Evaluation and Improvement Scheme for Open Test Blasting (노천시험발파의 진동평가와 개선방안)

  • Kim, Eung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.310-315
    • /
    • 2017
  • Although studies evaluating the effects of the blasting vibration on the adjacent structures from various angles have continued, cases of securing the safety of the adjacent buildings and researching the proper blasting method for the field condition by analyzing the vibration waveform of the measuring field while performing the open pit blasting are poor. Therefore, it is necessary to present a remedy for blasting pattern selection through test blasting that is appropriate for field conditions, and is economical and efficient. In this study, open pit blasting work was conducted based on the separation distance applied according to the standard blasting method by test blasting and the vibration regulation standard in the road expansion construction site to measure the blasting vibration value, and the vibration prediction equation by blasting methods was examined using a regression analysis computer program to calculate K, N, and R of the confidence level 95%. By setting the blasting allowed vibration standard of the test blasting target area to 0.3cm/sec, and the charring weight and blasting method by the separation distances according to the blasting vibration estimation equation of the open pit blasting guideline and the blasting vibration estimation equation of the test blasting were compared/analyzed, it was possible to identify the factors that increased the working expenses. In addition, the measurement and analysis of the adjacent structures during open pit blasting and the blasting vibration were performed after selecting the most adjacent structure to the open pit blasting spot to analyze the problems on the test blasting procedure and analysis method in the open pit blasting design/construction guidelines, which appeared in the process of completing open pit blasting construction, and a remedy is presented.

A Study of Planning for Gumswae-dong Garden Heritage Maintenance (고산 윤선도 금쇄동 정원유적 정비에 관한 연구)

  • Kim, Moo-Han;Sung, Jong-Sang
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2015
  • Gosan Yoon, Sundo's Gumswae-dong Garden Heritage has been designated as a National Historical Site 432 including Hyunsan old fortress wall. The site requires maintenance planning. For the plan, it also requires the consideration of Gosan's written documents describing the garden heritage and the site survey with on-site inspections for authentic maintenance approaches. It should be based on the thorough comprehension of historical remains. The site is a traditional ancient garden, so its approaches should be different with a historic structure and building. For the planning, the study conducts the interview of residents and experts, literature review, the investigation of historical materials, site survey, and the analysis of aerial photography. The results are following:5) Firstly, the paper suggests three types of an excavation area selection: core, recommend and investigation. Secondly, of 22 landscapes named by Gosan, it has the plan of guidance facilities, vegetation maintenance, safety facilities, landscape maintenance as view points, pathway maintenance, deck, and halting place. Thirdly, it also suggests pathway plan for authentic garden promenade according to the literature of Gumswaedong-Gi, an old map and aerial photography(1967, 1976, 1990), and interviews with residents. Fourthly, it suggests vegetation refurbishment at the site to check erection time and to require a preservation plan. In a case of no historic remains part, it also has a plan of amenities for visitors and wetlands for biodiversity of ecology and landscape. Finally, although it requires excavation and more historical evidences for the Hyunsan fortress wall, it suggests a maintenance plan of Pyeonchuksseong and Hyeopchuksseong partially.

A Study on the Improvement of Greenhouse Frame to Bear the Heavy Snow (적설하중 증가에 대비한 비닐하우스 골조 성능의 개선 연구)

  • Jung, Hyunjin;Yang, Sanghyun;Lee, Taehee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2242-2248
    • /
    • 2015
  • The damages from greenhouses collapsing due to heavy snowfall in winter are increasing, and the current frames of greenhouse are required to be improved. This study was conducted to seek solutions to improve intensities of greenhouse frame to bear heavy snows. We investigated a structural safety of greenhouses by calculating axial force, bending moment and combined stress when snow load was increased up to 30% of the current standard ground snow load of the conventional greenhouse types (07-single type 3, 07-single type 18) in the three regions (Gyeongju, Sokcho, and Gangneung) where were most damaged by recent heavy snows. In addition, we determined what structural type was most efficiently bear snow loads by measuring the differences between the load bearing strength according to the changes of tube diameter and thickness or the rafter spacing of greenhouses circular pipe. MIDAS GEN program was used in the analysis. As a result, with the snow load increase of 30%, greenhouse in Gyongju was still safe, but in Sokcho was at a risk, and in Gangneung was possible to be collapsed even in the current snow load. Increased pipe diameter than increased pipe thickness was more efficient in terms of improved performance of greenhouse structure. Accordingly, it is suggested to revise standards of greenhouse to increase pipe diameter of rafter for minimizing damages by heavy snow.