• Title/Summary/Keyword: Structure of Fabric

Search Result 502, Processing Time 0.025 seconds

Fabrication and Characteristics of Chitosan Non-woven Fabric developed using only water as plasticizer

  • Lee, Shin-Hee;Hsieh, You-Lo
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.319-325
    • /
    • 2014
  • This article describes a method for producing chitosan non-woven fabrics by just hot pressing without the use of a binder. A study has been made of the wet spinning of chitosan fiber. The fibers were rinsed thoroughly in running water and chopped wet into staples of with a length of approximately 5-10 mm. The chopped chitosan staples were dispersed uniformly in water and fabricated using a non-woven making machine. This study examined the formation and the characteristics of chitosan non-woven fabrics manufactured by hot pressing without the use of a binder. The effects of the non-woven fabrication conditions on the thermal, morphological, structural, and physical properties of chitosan non-woven fabric with and without water as a plasticizer were studied. The temperature of the exothermic peak, decomposition of chitosan fibers increased with increasing heating rate. Water in the chitosan fiber effectively plasticized the chitosan fiber. The thermal bonded structure of the wet chitosan fiber with water as a plasticizer was clearly found in many parts of the non-woven fabric at a fabrication temperature of $200^{\circ}C$. The intensity and profile of the (100) plane($2{\theta}=10.2^{\circ}$) and (040) plane($2{\theta}=20.9^{\circ}$) in the chitosan non-woven fabric decreases and became smooth in the non-woven fabric formation by melting.

3D Modeling of a Fabric based on its 3D Microstructure Image and Application of the Model of the Numerical Simulation of Heat Transfer

  • Lee, Hyojeong;Lee, Heeran;Eom, Ran-i;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.20 no.3
    • /
    • pp.30-42
    • /
    • 2016
  • The objective of this study was to perform 3D solid modeling from 3D scanned surface images of cotton and silk in order to calculate the thermal heat transfer responses using numerical simulations. Continuing from the previous methodology, which provided 3D surface data for a fabric through optical measurements of the fabric microstructure, a simplified 3D solid model, containing a defined unit cell, pattern unit and fabric structure, was prepared. The loft method was used for 3D solid-model generation, and heat transfer calculations, made for the fabric, were then carried out using the 3D solid model. As a result, comprehensive protocols for 3D solid-model generation were established based on the optical measurements of real fabric samples. This method provides an effective means of using 3D information for building 3D models of actual fabrics and applying the model in numerical simulations. The developed process can be used as the basis for other analogous research areas to investigate the physical characteristics of any fabrics.

Study on Jacquard Fabric Design of Dan-Chung Motives Using Fabric Simulation (직물 시뮬레이션을 활용한 금문 단청 문양의 자카드 직물 디자인 연구)

  • Song, Ha-Young;Lee, Joo-Hyeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.11 no.2
    • /
    • pp.33-42
    • /
    • 2009
  • The purpose of this study was to research the development of jacquard fabrics by the Bi-Dan patterns of Dan-Chung as one of the traditional korean symbols. For performing this design study, it designed a surface design of the geometric images in Bi-Dan patterns using by EAT Jacquard Textile CAD system and simulated to fabrics for the clothing & bags. To consider the modern image of Bi-Dan patterns in the Dan-Chung motives, the theoretical background was made on the basic elements, compositions and symbolic meanings of Dan-Chung patterns. To merchandise the fashion items and see the visual image, these jacquard fabric simulations was processed by two-dimension modeling through YoungWoo CNI CAD. The applied weave structure was based on a single layer of 5 or 10 points-satin and a double layer of 8 points-satin. Among the fabric simulations of Bi-Dan patterns, the six simulated fabrics were woven into the real jacquard fabrics under the electronic Stabuli jacquard loom in $120{\sim}130$ picks per inch and 171 ends per inch. These developed jacquard fabrics of Bi-Dan patterns were appeared a contemporary yet ethnic feeling so that they could make use of the unique korean cultural products by the further commercialization.

  • PDF

Effect of Nonionic Surfactant Solutions on Wetting and Absorbancy of PET Fabric 1. Mixtures and Dilutions of Span 20 and Tween 20 (비이온계 계면활성제 수용액이 PET직물의 습윤특성에 미치는 영향 제1보 : Span 20과 Tween 20의 혼합계와 희석계)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.9_10
    • /
    • pp.1153-1159
    • /
    • 2003
  • The effects of changing aqueous solution properties by nonionic surfactants on wetting behavior and water retention properies of hydrophobic PET (polyethylene terephthalate) fabric were reported. The aqueous solution properties were diversified by mixing and diluting two nonionic surfactants, i.e., sorbitan monolaurate (Span 20) and polyoxyethylene(20) sorbitan monolaurate (Tween 20). The surface wetting properties ($cos{\theta}$) of PET fabric were greatly improved by adding $10^{-1}g/dl$ Tween 20 and further improved by mixing Span 20 to the system. The water retention properties (W) of PET fabric were also greatly increased by addition of $10^{-1}g/dl$ Tween 20. In diluted surfactant systems, the $cos{\theta}'s$ were increased with decreasing surface tension of aqueous liquids. The ratios of aqueous liquid retained in the pore structure to liquid retention capacity (W/H) were also increased with decreasing surface tension, however, W/H values were dramatically increased right after critical micelle concentration (cmc). The existence of micelles was important for the retention of aqueous liquids in the fabric. The critical surface tension of PET fabric used was found to be 28.7dyne/cm.

Development and Sensory Evaluation of Jacquard Fabrics with Three Dimensional Pattern Design for Bag (가방용 3D 입체패턴 디자인 자카드 직물 개발과 감성구조)

  • Kim, Jeong-Hwa;Kim, Myoung-ok;Lee, Jung-soon
    • Fashion & Textile Research Journal
    • /
    • v.21 no.1
    • /
    • pp.104-111
    • /
    • 2019
  • This study was developed using the DTP (digital textile printing) jacquard fabrics with a three-dimensional pattern for bag and evaluated the preference and emotional structure. The following conclusions were obtained. Three-dimensional patterns of 12 species using the illustrator program, including six kinds of designs based on the text and six kinds of character types based on the geometry of the basic design was developed. As a result of evaluating the preference of the three-dimensional pattern jacquard fabric, the most preferred fabric was a three-dimensional patterned jacquard fabric with a motif of the Korean consonant "ㅅ". The results of analyzing the emotional dimension of the three-dimensional pattern jacquard fabric, eight factors including simple image, feminine image, exotic image, graphic image, sporty image, masculine image, dynamic image and stereoscopic image were derived. Between emotional factors and preferences correlation analysis showed the stronger the simple image, the feminine image, and the sporty image, the more preferable. It suggested the possibility of a morphological and new fabric for bag, textile design motifs by using Hangul consonants attempt to limit the flatness of the existing geometric form patterns that can be applied to three-dimensional bag whether swirly patterns overcome.

The appearance change and heat·moisture transfer properties of knitted fabric by yarn shrinkage (원사의 수축에 따른 다공성 편성물의 형태변화와 열·수분 전달특성)

  • Sang, Jeong-Seon;Park, Juhyun;Lee, Mee-Sik;Oh, Kyung Wha
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.6
    • /
    • pp.880-892
    • /
    • 2017
  • In this study, the appearance change and the heat moisture transfer properties of knitted fabric by yarn shrinkage were examined to obtain useful data on the development of thermo-sensitive functional materials. Eleven types of knitted fabric were knitted using highly bulky acrylic-blended yarn. After shrinking the specimens using dry heat treatment, the appearance change and thickness were measured. An HEC simulator was adopted for measuring the heat moisture transfer properties of specimens by yarn shrinkage. When holes were arranged vertically in the mesh structure, the specimens with 2,500 and 5,000 holes showed high percent change of hole area, appearance, and thickness. When holes were diagonally arranged in the mesh structure, the percent change of hole area in the specimen with 1,250 holes was larger than the one with 2,500 holes. However, the dimensional stability of the specimen with 2,500 holes was better because of its smaller appearance and thickness change. In the tuck structure, the percent change of hole area in the specimen with 625 and 416 holes was relatively large compared with the appearance and thickness change. Furthermore, the hole size in the tuck structure was smaller than that in the mesh structure but the percent change of hole area was larger. Therefore, it was proved that the tuck structure is more suitable than the mesh structure for developing thermo-sensitive functional materials. Heat moisture transfer property test verified that the change of hole area by yarn shrinkage enabled obtaining the thermal effect due to the distinct temperature difference in the inner layer.

Effects of Silicone Mixed Fluorochemical Finishes on Fabric Performance Characteristics of a Microfiber Polyester/Cotton Blend Fabric

  • Ahn, Young-Moo;Li, Bin;Kim, Charles J.
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.486-491
    • /
    • 2001
  • The purpose of this study was to examine the effects of chemical finishes on performance characteristics of microfiber blend fabrics. A 60% polyester microfiber/40% cotton blend woven fabric was finished by ten chemicals: three silicone softeners, one fluorochemical, and their mixtures. Performance characteristics examined were abrasion resistance, and oil/water repellency. Chemical finishes containing dimethylpolysiloxane silicone performed better in fabric abrasion resistance than other chemicals. The correlation between abrasion wear and instrumental measures of fabric hand indicated that the breaking strength loss by abrasion related negatively to the coefficient of friction. This implied that the finished fabrics with lower surface frictional coefficient (slipperier) had higher breaking strength loss by abrasion. The microfiber structure of polyester did not appear to help in oil/water repellency due to the larger surface areas of the microfibers. The fluorochemical finished fabric had the most significant improvement on oil/water repellency. The silicone-only finishes, however, did not improve oil/water repellency. When mixed with the fluorochemical, silicone finishes showed improved oil/water repellency.

  • PDF

A Study on the Thermal Comfort and Air Permeability of Adhesive Fabrics Before and After Adhesion of Nonwoven Adhesive Interlining (부직포 접착심지 부착 전후의 접착포의 열적 쾌적성과 공기투과성에 관한 연구)

  • 김경희;김승진
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.807-815
    • /
    • 1998
  • Functions of interlinings to the shell fabric are to improve the garment formability for a beautiful silhouette and elastic potential to the deformed fabric during wearing, and also are to enhance appearance and wearing properties of garment. The objective of this study is to analyse the thermal properties of nonwoven fusible interlining to the thin worsted fabric with various fabric structural parameters. For the purpose fo this study, eight specimens with various weft yarn twists and weft densities of thin worsted fabrics are prepared. Three nonwoven fusible interlinings with different structure which were made by Nylon/Polyester were used for adhering to the thin worsted fabrics. Thermal properties of these 24 adhesive fabrics fused with 3 nonwoven interlinings are measured by KES-F7 System for analysing the thermal suitability of nonwoven fusible interlinings to the thin worsted fabrics with various fabric structural parameters. And air permeability, which was measured by KES-F8-API, of 24 nonwoven adhesive interlining fabrics was also analysed and discussed with the various kinds of nonwoven interlinings and fabric structural parameters.

  • PDF

The Characteristics of Kenaf/Rayon Fabrics (케냐프/레이온 혼방 직물의 특성에 관한 연구)

  • 이혜자;안춘순;김정희;유혜자;한영숙;송경헌
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.910
    • /
    • pp.1282-1291
    • /
    • 2004
  • Kenaf was cultivated and harvested in large quantity in Cheju Island and Chinju, Kyungsangnamdo. It was chemically rotted with 3% NaOH for 60 minutes at 100$^{\circ}C$, neutralized using 1% acetic acid, washed and dried, and obtained 40kg of dry kenaf fiber. Kenaf 15/rayon 85, flax 15/rayon 85, and rayon 100% yam was spun and the physical characteristics were measured. Plain weave and twill weave fabrics were made using each of the above yarns as the filling yam. Cotton 100% yam was used as the warp yam in all fabrics. Kenaf/rayon blend yarns were higher in tenacity and elongation, lower in yam uniformity, higher in the number of nep than the flax/rayon blended yams. Kenaf/rayon blend fabric had higher tenacity and elongation compared to the flax/rayon blend fabric Kenaf/rayon blend fabric was most stiff in both plain weave and twill weave fabrics whereas drape characteristics was dependent upon the fabric structure of the kenaf/rayon blend and flax/rayon blend. There were little differences between the kenaf/rayon blend fabric and the flax/rayon blend fabric in the Kawabata physical measurements and the PHVs. The only drawback of kenaf fiber was it's surface roughness and it is expected that it can be improved by enzyme retting and mechanical bundle separation.

Fashion Textile Planning by Eco-friendly Fabrics with Traditional Pattern (전통문양과 친환경소재를 활용한 패션소재기획)

  • Park, Young-Mi;Park, Kyung-Soon
    • Korean Journal of Human Ecology
    • /
    • v.18 no.5
    • /
    • pp.1103-1113
    • /
    • 2009
  • Now in the 21st century, all the industries in our world are rapidly changing, including fashion trends and customers' needs as well. Fashion textile planning is also developing towards the direction where it could satisfy the merged sensitivity and incentive of the customers through an idea. The purpose of this study is to accentuate the importance of fashion material planning in fitting conventional patterns and eco-benign fabric materials. Accordingly, this study is mainly focused on the reflection of fabric planning characteristics to show tradition containing comfort and naturalness. As mixing with established fabrics and blending with natural/functional fabrics, and conforming to the trend of the seasonal fabric, it has developed a new structure and pattern by changing the basic source of traditional patterns to a computer aided design system. Therefore, four different types of items were basically up-graded by fitting it in with traditional patterns.