• Title/Summary/Keyword: Structure instability

Search Result 576, Processing Time 0.026 seconds

Analysis on Nonlinear Distortion due to Modulation Instability and Proposal of Link Structure for Compensation in Optical Amplified Transmission Systems (광증폭 전송시스템에서 Modulation Instability에 의한 비선형 왜곡의 분석 및 광링크 보상구조의 제안)

  • 이용원;김용범;이명문;유진태;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5A
    • /
    • pp.316-322
    • /
    • 2003
  • We theoretically analyze the properties of nonlinear distortion due to modulation instability (MI), which is a major factor of performance degradation in optical amplified transmission systems, and propose an optical link structure to compensate MI based on the analysis. The proposed MI compensating link structure is composed of optical phase conjugators (OPCs) and dispersion compensating fibers (DCFs) in order to suppress nonlinear effects in optical transmission links. It has been confirmed through computer simulations that the performance of the proposed compensation scheme is superior to that of conventional compensation schemes for 500 km transmission.

Assessments of dissipative structure-dependent integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • Two $Chang-{\alpha}$ dissipative family methods and two $KR-{\alpha}$ family methods were developed for time integration recently. Although the four family methods are in the category of the dissipative structure-dependent integration methods, their performances may be drastically different due to the detrimental property of weak instability or overshoot for the two $KR-{\alpha}$ family methods. This weak instability or overshoot will result in an adverse overshooting behavior or even numerical instability. In general, the four family methods can possess very similar numerical properties, such as unconditional stability, second-order accuracy, explicit formulation and controllable numerical damping. However, the two $KR-{\alpha}$ family methods are found to possess a weak instability property or overshoot in the high frequency responses to any nonzero initial conditions and thus this property will hinder them from practical applications. Whereas, the two $Chang-{\alpha}$ dissipative family methods have no such an adverse property. As a result, the performances of the two $Chang-{\alpha}$ dissipative family methods are much better than for the two $KR-{\alpha}$ family methods. Analytical assessments of all the four family methods are conducted in this work and numerical examples are used to confirm the analytical predictions.

Nonlinear Combustion Instability Analysis of Solid Rocket Motor Based on Experimental Data

  • Wei, Shaojuan;Liu, Peijin;Jin, Bingning
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.58-61
    • /
    • 2015
  • Combustion instability in solid rocket motors is a long-term open problem since the first rockets were used. Based on the numerous previous studies, it is known that the limit cycle amplitude is one of the key characteristics of the nonlinear combustion instability in solid rocket motors. Flandro's extended energy balance corollary, aims to predict the limit cycle amplitude of complex, nonlinear pressure oscillations for rockets or air-breathing engines, and leads to a precise assessment of nonlinear combustion instability in solid rocket motors. However, based on the comparison with experimental data, it is revealed that the Flandro's method cannot accurately describe such a complex oscillatory pressure. Thus in this work we make modifications of the nonlinear term in the nonlinear wave equations which represents the interaction of different modes. Through this modified method, a numerical simulation of the cylindrical solid rocket has been carried out, and the simulated result consists well with the experimental data. It means that the added coefficient makes the nonlinear wave growth equations describe the experimental data better.

Aeroelastic Behaviour of Aerospace Structural Elements with Follower Force: A Review

  • Datta, P.K.;Biswas, S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.134-148
    • /
    • 2011
  • In general, forces acting on aerospace structures can be divided into two categories-a) conservative forces and b) nonconservative forces. Aeroelastic effects occur due to highly flexible nature of the structure, coupled with the unsteady aerodynamic forces, causing unbounded static deflection (divergence) and dynamic oscillations (flutter). Flexible wing panels subjected to jet thrust and missile type of structures under end rocket thrust are nonconservative systems. Here the structural elements are subjected to follower kind of forces; as the end thrust follow the deformed shape of the flexible structure. When a structure is under a constant follower force whose direction changes according to the deformation of the structure, it may undergo static instability (divergence) where transverse natural frequencies merge into zero and dynamic instability (flutter), where two natural frequencies coincide with each other resulting in the amplitude of vibration growing without bound. However, when the follower forces are pulsating in nature, another kind of dynamic instability is also seen. If certain conditions are satisfied between the driving frequency and the transverse natural frequency, then dynamic instability called 'parametric resonance' occurs and the amplitude of transverse vibration increases without bound. The present review paper will discuss the aeroelastic behaviour of aerospace structures under nonconservative forces.

Effect of External Acoustic Excitation on Wake behind a Circular Cylinder (외부 음향여기가 원주 후류 유동에 미치는 효과에 관한 연구)

  • Choi, Jae-Ho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.603-609
    • /
    • 1999
  • The effect of an external acoustic excitation on the wake structure behind a circular cylinder was experimentally investigated. The sound wave was excited in the frequency range of the shear layer instability and two sound pressure levels of 114 and 120dB were used in this study. As a result, the acoustic excitation modified the wake structure by increasing the velocity fluctuation energy without changing the vortex shedding frequency. The acoustic excitation enhanced the vortex shedding process and promoted the shear layer instability. Consequently, the acoustic excitation reduced the length of the vortex formation region and decreased the base pressure. In addition, the vortex strength of vortices was increased and the width of the wake was spread out due to the acoustic excitation. When the excitation frequency was identical to the shear layer instability frequency, the effect of the external flow control on the cylinder wake was maximized. In addition, with increasing the sound pressure level, the effect of the external acoustic excitation on the wake structure increased.

Stringer Shape Optimization of Aircraft Panel Assembly Structure (항공기 패널 조립체 구조물의 스트링거 형상 최적화)

  • Kim Hyoung-Rae;Park Chan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.136-142
    • /
    • 2006
  • Optimization of the aircraft panel assembly constructed by skin and stringers is investigated. For the design of panel assembly of the aircraft structure, it is necessary to determine the best shape of the stringer which accomplishes lowest weight under the condition of no instability. A panel assembly can fail in a variety of instability modes under compression. Overall modes of flexure or torsion can occur and these can interact in a combined flexural/torsion mode. Flexure and torsion can occur symmetrically or anti-symmetrically. Local instabilities can also occur. The local instabilities considered in this paper are buckling of the free and attached flanges, the stiffener web and the inter-rivet buckling. A program is developed to find out critical load for each instability mode at the specific stringer shape. Based on the developed program, optimization is performed to find optimum stringer shape. The developed instability analysis program is not adequate for sensitivity analysis, therefore RSM (Response Surface Method) is utilized instead to model weight and instability constraints. Since the problem has many local minimum, Genetic algorithm is utilized to find global optimum.

Design of air-cooled waste heat removal system with string type direct contact heat exchanger and investigation of oil film instability

  • Moon, Jangsik;Jeong, Yong Hoon;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.734-741
    • /
    • 2020
  • A new air-cooled waste heat removal system with a direct contact heat exchanger was designed for SMRs requiring 200 MW of waste heat removal. Conventional air-cooled systems use fin structure causing high thermal resistance; therefore, a large cooling tower is required. The new design replaces the fin structure with a vertical string type direct contact heat exchanger which has the most effective performance among tested heat exchangers in a previous study. The design results showed that the new system requires a cooling tower 50% smaller than that of the conventional system. However, droplet formation on a falling film along a string caused by Rayleigh-Plateau instability decreases heat removal performance of the new system. Analysis of Rayleigh-Plateau instability considering drag force on the falling film surface was developed. The analysis results showed that the instability can be prevented by providing thick string. The instability is prevented when the string radius exceeds the capillary length of liquid by a factor of 0.257 under stagnant air and 0.260 under 5 m/s air velocity.

Regional Industrial Diversity and Economic Growth and Employment Instability in Korea (지역의 산업구조 다양성이 지역경제에 미치는 영향분석)

  • 김강성;송영필
    • Journal of the Korean Regional Science Association
    • /
    • v.15 no.1
    • /
    • pp.23-43
    • /
    • 1999
  • The strategy of regional industrial specialization is empirically evaluated by examining the relationship between regional industrial structures and economic performances. The regional industrial structure is measured by three industrial diversity indices such as ogive approach, entropy maximizing approach, and economic growth and employment instability in 12 regions is analyzed. According to the time series analysis, we found that the region with more diversified industrial structure experiences more stable in employment. Otherwise, the growth rate of the region with more simplified industrial structure is higher. Therefore, the strategy of industrial specialization is implemented in order to pursuit a rapid economic growth in the short run.

  • PDF

Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects

  • Golabchi, Hadi;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.431-440
    • /
    • 2018
  • Fluid velocity analysis on the instability of pipes reinforced by silica nanoparticles ($SiO_2$) is presented in this paper. Mori-Tanaka model is used for obtaining the effective materials properties of the nanocomposite structure considering agglomeration effects. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on the Reddy higher-order shear deformation theory, the motion equations are derived based on energy method and Hamilton's principal. The frequency and critical fluid velocity of structure are calculated using differential quadrature method (DQM) so that the effects of different parameters such as volume fractions of SiO2 nanoparticles, SiO2 nanoparticles agglomeration, boundary conditions and geometrical parameters of pipes are considered on the nonlinear vibration and instability of the pipe. Results indicate that increasing the volume fractions of SiO2 nanoparticles, the frequency and critical fluid velocity of the structure are increased. Furthermore, considering SiO2 nanoparticles agglomeration, decreases the frequency and critical fluid velocity of the pipe.

Instability of Magnetized Ionization Fronts

  • Kim, Woong-Tae;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2014
  • An ionization front (IF) surrounding an H II region is a sharp interface through which a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central massive stars. We investigate the structure and instability of a plane-parallel D-type IF threaded by magnetic fields parallel to the front. We find that magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor, defined as the density ratio of neutral to ionized phases. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when ${\beta}$ < 1.5, with ${\beta}$ denoting the square of the ratio of the sound speed to the Alfven speed in the pre-IF region. When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable. We discuss potential effects of IF instability on the evolution and dynamics of IFs in the interstellar medium.

  • PDF