• 제목/요약/키워드: Structure identification

검색결과 1,727건 처리시간 0.032초

Identification of Damage on a Substructure with Measured Frequency Response Functions

  • Park Nam-Gyu;Park Youn-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1891-1901
    • /
    • 2005
  • Recently the authors tried to find damage position only using measured frequency response functions. According to their work, it seems that the algorithm is very practical since it needs only measured frequency responses while other methods require exact analytic model. But when applying the method to a real structure, it requires lots of experiment. The authors, in this time, propose a method to reduce its experimental load by detecting damage within a substructure. This method searches damages not within an entire structure but within substructures. In addition, damage severity was treated in this paper since it is worthy to know damage severity. Optimization technique is used to estimate damage level using measured responses and damage model. Two test examples, a plate and a jointed structure, are chosen to verify the suggesting method.

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

Identification of damage using natural frequencies and system moments

  • Hassiotis, S.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.285-297
    • /
    • 1999
  • A method is presented to find the location and magnitude of damage in a structure using data from dynamic tests. The test data include a combination of natural frequency measurements, taken before and after the occurrence of damage, and response measurements taken after damage. An algorithm is developed to identify localized increases in the flexibility of the structural members. Increases in flexibility are attributed to damage. The algorithm uses the sensitivity of the flexibility matrix to changes in the natural frequencies of the structure to identify the damage. A set of under determined equations is solved using an objective function which is derived from measurements of the system moments. Damage ranging from 10 to 60% increase in the flexibility of a member was successfully identified in a 50 d.o.f. structure, using a small number of natural frequency and velocity measurements.

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

Model Analysis of Plate using by Digital Test System (디지털 실험장치를 이용한 판의 모우드 해석)

  • Hong, Bong-Ki;Bae, Dong-Myung;Bae, Seong-Yoeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제29권1호
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

Application Studies on Structural Modal Identification Toolsuite for Seismic Response of Shear Frame Structure (SMIT를 활용한 지진하중을 받는 전단 구조물의 응답모드 특성에 관한 연구)

  • Chang, Minwoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제22권3호
    • /
    • pp.201-210
    • /
    • 2018
  • The improvement in computing systems and sensor technologies devotes to conduct data-driven structural health monitoring algorithms for existing civil infrastructures. Despite of the development of techniques, the uncertainty oriented from the measurement results in the discrepancy to the actual structural parameters and let engineers or decision makers hesitate to adopt such techniques. Many studies have shown that the modal identification results can be affected by the uncertainties due to the applied methods and the types of loading. This paper aims to compare the performance of modal identification methods using Structural Modal Identification Toolsuite (SMIT) which has been developed to facilitate multiple identification methods with a user-friendly designed platform. The data fed into SMIT processes three stages for the comprehensive identification including preprocessing, eigenvalue estimation, and post-processing. The seismic and white noise response for shear frame model was obtained from numerical simulation. The identified modal parameters is compared to the actual modal parameters. In order to improve the quality of coherence in identified modal parameters, several hurdles including modal phase collinearity and extended modal amplitude coherence were introduced. Numerical simulation conducted on the 5 dof shear frame model were used to validate the effectiveness of using these parameters.

A Development of the Risk Identification Checklist through the Re-establishment of Risk Breakdown Structure of Construction Project (건설사업 위험분류체계의 재정립을 통한 위험인지 체크리스트 개발)

  • Chu Hae-Keum;Kim Seon-Gyoo
    • Korean Journal of Construction Engineering and Management
    • /
    • 제4권2호
    • /
    • pp.109-117
    • /
    • 2003
  • The construction project is largely exposed to much more risk events over the project life cycle due to its complexity and size than the other industries. Therefore, the construction risk management process to identify and response the risk events is not only performing acutely but also proceeding systematically. The risk identification phase in the risk management process is to identify various risk events and define its characteristics. At this phase, the risk identification system is very useful tool to identify every possible risk events in the project. This study shows some problems of the existing risk identification system and proposes the modified risk identification system based on the project phases and the contract bodies, and also suggests partial but more enough detailed risk checklists to be implemented in the actual risk identification phase than any other existing risk breakdown systems to be examined at this study.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

System Identification Analysis on Soil-Structure Interaction Using Field Data (현장자료를 사용한 지반-구조물 상호작용에 대한 경험적 연구)

  • Kim Seung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • 제21권2호
    • /
    • pp.37-46
    • /
    • 2005
  • In the field of earthquake engineering, recent improvements in many areas, such as seismological source modeling, analysis of travel path effects, and characterization of local site effects on strong shaking, have led to significant advances in both code-based and more advanced procedures for evaluating earthquake ground motions. A missing link, however, is empirically verified design procedures fur assessing the effects of soil-structure interaction (SSI). Available Soil-Structure Interaction (SSI) analysis techniques range from simple substructure-type procedures to relatively sophisticated finite element procedures. The most common substructure approach for foundation-soil interaction is to use a frequency-dependent and complex-valued impedance function. This study uniquely evaluates impedance functions for two well-instrumented sites w significant inertial SSI effects using a system Identification technique. The system identification analysis results are then compared to predictions from a simple theoretical model to gain insight into the inertial interaction effect in the subject sites.

System Identification Using Mode Decoupling Controller : Application to a Structure with Hidden Modes (모드 분리 제어기를 이용한 시스템 규명 : 히든 모드를 갖는 구조물에의 적용)

  • Ha, Jae-Hoon;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1334-1337
    • /
    • 2006
  • System identification is the field of modeling dynamic systems from experimental data. As a modeling technique, we can mention finite element method (FEM). In addition, we are able to measure modal data as the experimental data. The system can be generally categorized into a gray box and black box. In the gray box, we know mathematical model of a system, but we don't know structural parameters exactly, so we need to estimate structural parameters. In the black box, we don't know a system completely, so we need to identify system from nothing. To date, various system identification methods have been developed. Among them, we introduce system realization theory which uses Hankel matrix and Eigensystem Realization Algorithm (ERA) that enable us to identify modal parameters from noisy measurement data. Although we obtain noise-free data, however, we are likely to face difficulties in identifying a structure with hidden modes. Hidden modes can be occurred when the input or output position comes to a nodal point. If we change a system using a mode decoupling controller, the hidden modes can be revealed. Because we know the perturbation quantities in a closed loop system with the controller, we can realize an original system by subtracting perturbation quantities from the closed loop system. In this paper, we propose a novel method to identify a structure with hidden modes using the mode decoupling controller and the associated example is given for illustration.

  • PDF