• 제목/요약/키워드: Structure identification

검색결과 1,727건 처리시간 0.025초

Development of Semantic Risk Breakdown Structure to Support Risk Identification for Bridge Projects

  • Isah, Muritala Adebayo;Jeon, Byung-Ju;Yang, Liu;Kim, Byung-Soo
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.245-252
    • /
    • 2022
  • Risk identification for bridge projects is a knowledge-based and labor-intensive task involving several procedures and stakeholders. Presently, risk information of bridge projects is unstructured and stored in different sources and formats, hindering knowledge sharing, reuse, and automation of the risk identification process. Consequently, there is a need to develop structured and formalized risk information for bridge projects to aid effective risk identification and automation of the risk management processes to ensure project success. This study proposes a semantic risk breakdown structure (SRBS) to support risk identification for bridge projects. SRBS is a searchable hierarchical risk breakdown structure (RBS) developed with python programming language based on a semantic modeling approach. The proposed SRBS for risk identification of bridge projects consists of a 4-level tree structure with 11 categories of risks and 116 potential risks associated with bridge projects. The contributions of this paper are threefold. Firstly, this study fills the gap in knowledge by presenting a formalized risk breakdown structure that could enhance the risk identification of bridge projects. Secondly, the proposed SRBS can assist in the creation of a risk database to support the automation of the risk identification process for bridge projects to reduce manual efforts. Lastly, the proposed SRBS can be used as a risk ontology that could aid the development of an artificial intelligence-based integrated risk management system for construction projects.

  • PDF

부분공간법에 의한 건축구조물의 동특성 식별 (System Identification of Building Structure using Subspace Identification Method)

  • 배기환
    • 한국공간구조학회논문집
    • /
    • 제3권4호
    • /
    • pp.53-58
    • /
    • 2003
  • In order to control seismic responses of building structures effectively and stably, it is very important to estimate the dynamic characteristics of target structure exactly based on input-output signal data. In this paper, it is shown that Subspace Identification Method is able to be applied effectively to system identification of building structures. To verify the efficiency of Subspace Identification Method, the vibration experiments were conducted on a specimen structure which is a 5-storied building structure model consisted of H-shaped steel beam, and the simulated seismic responses of the identified structure model were compared with the observed ones under the same excitation. It was observed that the experimental results coincided with the analyzed ones proposed in this paper.

  • PDF

Structural damage identification with power spectral density transmissibility: numerical and experimental studies

  • Li, Jun;Hao, Hong;Lo, Juin Voon
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.15-40
    • /
    • 2015
  • This paper proposes a structural damage identification approach based on the power spectral density transmissibility (PSDT), which is developed to formulate the relationship between two sets of auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is investigated and the damage identification in structures is conducted with measured acceleration responses from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to investigate the performance of the proposed damage identification approach. The initial finite element model of the structure and measured acceleration measurements from the damaged structure are used for the identification with a dynamic response sensitivity-based model updating method. The simulated damages can be identified accurately without and with a 5% noise effect included in the simulated responses. Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged elements are identified close to the true values. The identification results demonstrated the accuracy of response reconstruction as well as the correctness and efficiency of the proposed damage identification approach.

Structure Identification of a Neuro-Fuzzy Model Can Reduce Inconsistency of Its Rulebase

  • Wang, Bo-Hyeun;Cho, Hyun-Joon
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.276-283
    • /
    • 2007
  • It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.

A new conjugate gradient method for dynamic load identification of airfoil structure with randomness

  • Lin J. Wang;Jia H. Li;You X. Xie
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.301-309
    • /
    • 2023
  • In this paper, a new modified conjugate gradient (MCG) method is presented which is based on a new gradient regularizer, and this method is used to identify the dynamic load on airfoil structure without and with considering random structure parameters. First of all, the newly proposed algorithm is proved to be efficient and convergent through the rigorous mathematics theory and the numerical results of determinate dynamic load identification. Secondly, using the perturbation method, we transform uncertain inverse problem about force reconstruction into determinate load identification problem. Lastly, the statistical characteristics of identified load are evaluated by statistical methods. Especially, this newly proposed approach has successfully solved determinate and uncertain inverse problems about dynamic load identification. Numerical simulations validate that the newly developed method in this paper is feasible and stable in solving load identification problems without and with considering random structure parameters. Additionally, it also shows that most of the observation error of the proposed algorithm in solving dynamic load identification of deterministic and random structure is respectively within 11.13%, 20%.

비선형 시스템 식별을 위한 수정된 elman 신경회로망 구조 (Modified elman neural network structure for nonlinear system identification)

  • 정경권;권성훈;이인재;이정훈;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.917-920
    • /
    • 1998
  • In this paper, we propose a modified elman neural network structure for nonlinear system identification. The proposed structure is that all of network output feed back into hidden units and output units. Learning algorithm is standard back-propagation algorithm. The simulation showed the effectiveness of using the modified elman neural network structure in the nonlinear system identification.

  • PDF

동적강성행렬을 이용한 구조물의 손상검출기법 (Structural Damage Identification by Using Dynamic Stiffness Matrix)

  • 신진호;이우식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.635-640
    • /
    • 2001
  • This paper introduces a frequency-domain method of structural damage identification. It is formulated in a general form from the dynamic stiffness equation of motion for a structure and then applied to a beam structure. The appealing features of the present damage identification method are: (1) it requires only the frequency response functions experimentally measured from damaged structure as the input data, and (2) it can locate and quantify many local damages at the same time. The feasibility of the present damage identification method is tested through some numerically simulated damage identification analyses and then experimental verification is conducted for a cantilevered beam with damage caused by introducing three slots.

  • PDF

Numerical studies on the effect of measurement noises on the online parametric identification of a cable-stayed bridge

  • Yang, Yaohua;Huang, Hongwei;Sun, Limin
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.259-268
    • /
    • 2017
  • System identification of structures is one of the important aspects of structural health monitoring. The accuracy and efficiency of identification results is affected severely by measurement noises, especially when the structure system is large, such as bridge structures, and when online system identification is required. In this paper, the least square estimation (LSE) method is used combined with the substructure approach for identifying structural parameters of a cable-stay bridge with large degree of freedoms online. Numerical analysis is carried out by first dividing the bridge structure into smaller substructures and then estimates the parameters of each substructure online using LSE method. Simulation results demonstrate that the proposed approach is capable of identifying structural parameters, however, the accuracy and efficiency of identification results depend highly on the noise sensitivities of loading region, loading pattern as well as element size.

Dynamic identification of soil-structure system designed by direct displacement-based method for different site conditions

  • Mahmoudabadi, Vahidreza;Bahar, Omid;Jafari, Mohammad Kazem;Safiey, Amir
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.445-458
    • /
    • 2019
  • This study mainly aims to assess the performance of soil-structure systems designed by direct displacement-based method coupled with strong column-weak beam design concept through various system identification techniques under strong ground motions. To this end, various system identification methods are employed to evaluate the dynamic characteristics of a structure (i.e., modal frequency, system damping, mode shapes, and plastic hinge formation pattern) under a strong seismic excitation considering soil-structure interaction for different site conditions as specified by ASCE 7-10. The scope of the study narrowed down to the code-complying low- to high-rise steel moment resisting frames with various heights (4, 8, 12, 16-story). The comparison of the result of soil-structure systems with fix-based support condition indicates that the modal frequencies of these systems are highly influenced by the structure heights, specifically for the softer soils. This trend is more significant for higher modes of the system which can considerably dominate the response of structures in which the higher modes have more contribution in dynamic response. Amongst all studied modes of the vibration, the damping ratio estimated for the first mode is relatively the closet to the initial assumed damping ratios. Moreover, it was found that fewer plastic hinges are developed in the structure of soil-structure systems with a softer soil which contradicts the general expectation of higher damageability of such structural systems.

The Internal Structure of an Identification Function in Korean Lexical Pitch Accent in North Kyungsang Dialect

  • Kim, Jungsun
    • 말소리와 음성과학
    • /
    • 제5권1호
    • /
    • pp.91-98
    • /
    • 2013
  • This paper investigated Korean prosody as it relates to graded internal structure in an identification function. Within Korean prosody, variants regarded as dialectal variations can appear as different prosodic scales, which contain the range of within-category variations. The current experiment was intended to show how the prosodic scale corresponding to the range of within-category differences relates to f0 contours for speakers of two Korean dialects, North Kyungsang and South Cholla. In an identification task, participants responded by selecting an item from two answer choices. The probability of choosing the correct response from the two choices was computed by a logistic regression analysis using intercepts and slopes. That is, the correct response between two choices was used to show a linear line with an s-shape presentation. In this paper, to investigate the graded internal structure of labeling, 25%, 50%, and 75% of predicted probability were assessed. Listeners from North Kyungsang showed progressive variations, whereas listeners from South Cholla revealed random patterns in the internal structure of the identification function. In this paper, the results were plotted using scatterplot graphs, applying the range of within-category variation and predicted probability obtained from the logistic regression analyses. The scatterplot graphs showed the different degree of the responses for f0 scales (i.e., variations within categories). The results demonstrate that the gradient structures of native pitch accent users become more progressive in response to f0 scales.