• Title/Summary/Keyword: Structure and dynamics

Search Result 1,941, Processing Time 0.04 seconds

Mid-term (2009-2019) demographic dynamics of young beech forest in Albongbunji Basin, Ulleungdo, South Korea

  • Cho, Yong-Chan;Sim, Hyung Seok;Jung, Songhie;Kim, Han-Gyeoul;Kim, Jun-Soo;Bae, Kwan-Ho
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.241-255
    • /
    • 2020
  • Background: The stem exclusion stage is a stage of forest development that is important for understanding the subsequent understory reinitiation stage and maturation stage during which horizontal heterogeneity is formed. Over the past 11 years (2009-2019), we observed a deciduous broad-leaved forest in the Albongbunji Basin in Ulleungdo, South Korea in its stem exclusion stage, where Fagus engleriana (Engler's beech) is the dominant species, thereby analyzing the changes in the structure (density and size distributions), function (biomass and species richness), and demographics. Results: The mean stem density data presented a bell-shaped curve with initially increasing, peaking, and subsequently decreasing trends in stem density over time, and the mean biomass data showed a sigmoidal pattern indicating that the rate of biomass accumulation slowed over time. Changes in the density and biomass of Fagus engleriana showed a similar trend to the changes in density and biomass at the community level, which is indicative of the strong influence of this species on the changing patterns of forest structure and function. Around 2015, a shift between recruitment and mortality rates was observed. Deterministic processes were the predominant cause of tree mortality in our study; however, soil deposition that began in 2017 in some of the quadrats resulted in an increase in the contribution of stochastic processes (15% in 2019) to tree mortality. The development of horizontal heterogeneity was observed in forest gaps. Conclusions: Our observations showed a dramatic shift between the recruitment and mortality rates in the stem exclusion stage, and that disturbance increases the uncertainty in forest development increases. The minor changes in species composition are likely linked to regional species pool and the limited role of the life-history strategy of species such as shade tolerance and habitat affinity. Our midterm records of ecological succession exhibited detailed demographic dynamics and contributed to the improvement of an ecological perspective in the stem exclusion stage.

The Optimization of Feed System by the Dynamics of Structure and Responsibility (머시닝센터에서 구조물 진동과 응답성을 고려한 이송계 최적화 연구)

  • 김성현;윤강섭;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.365-369
    • /
    • 2002
  • This paper introduces that the machine tools's feed system optimizes by modeling for simulation and adjusting drive control parameter. The first method is frequency response of speed loop with design parameter by use of MATLAB application, in order that other axis can do equal to bandwidth. The second meted uses various sensor for analyzing machine tools's structure and adjustes jirk limitter.

  • PDF

Dynamics and Control of 6-DOF Shaking Table with Bell Crank Structure

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui;Park, Jong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.296-301
    • /
    • 2005
  • This paper describes the kinematics, dynamics and control of a 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. In this shaking table, the bell crank mechanism is used to reduce the amount of space needed to install the shaking table and create horizontal displacement of the platform. In kinematics, joint design is performed using $Gr{\ddot{u}}bler's$ formula. The inverse kinematics of the shaking table is discussed. The derivation of the Jacobian matrix is presented to evaluate singularity conditions. Considering the maximum stroke of the hydraulic actuator, collision between links and singularity, workspace is computed. In dynamics, computations are based on the Newton-Euler formulation. To derive parallel algorithms, each of the contact forces is decomposed into one acting in the direction of the leg and the other acting in the plane orthogonal to the direction of the leg. Applying the Newton-Euler approach, the solution of inverse dynamics is almost completely parallel. Only one of the steps-the application of the Newton-Euler equations to the platform-must be performed on one single processor. Finally, the efficient control scheme is proposed for the tracking control of the motion platform.

  • PDF

A INTEGRAL VARIABLE STRUCTURE CONTROLLER FOR BLDDSM WITH PRESCRIBED OPTIMAL OUTPUT DYNAMICS (직접구동용 브러쉬없는 직류 전동기를 위한 적분 가변 구조 제어기)

  • Lee, Jung-Hoon;Chung, Se-Kyo;Moon, Gun-Woo;Kim, Il-Song;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.472-474
    • /
    • 1994
  • A new integral variable structure system without the reaching phase problems is presented for the prescribed control of the BLDDSM under load variation and parameter uncertainties. The control technique can yields the complete robustness of initially prescribed output dynamics in the sliding surface against the modeling errors. The comparative simulation and experiment studies of the BLDDSM position control are carried out in comparison with two previous algorithms.

  • PDF

On the continuum formulation for modeling DNA loop formation

  • Teng, Hailong;Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.219-237
    • /
    • 2011
  • Recent advances in scientific computing enable the full atomistic simulation of DNA molecules. However, there exists length and time scale limitations in molecular dynamics (MD) simulation for large DNA molecules. In this work, a two-level homogenization of DNA molecules is proposed. A wavelet projection method is first introduced to form a coarse-grained DNA molecule represented with superatoms. The coarsened MD model offers a simplified molecular structure for the continuum description of DNA molecules. The coarsened DNA molecular structure is then homogenized into a three-dimensional beam with embedded molecular properties. The methods to determine the elasticity constants in the continuum model are also presented. The proposed continuum model is adopted for the study of mechanical behavior of DNA loop.

Molecular Dynamics Simulation for Bilayers of Alkyl Thiol Molecules at Solid-Solid Interfaces

  • 이송희;김한수;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1047-1054
    • /
    • 1998
  • We present the results of molecular dynamics simulations for three different systems of bilayers of long-chain alkyl thiol [S(CH2)15CH3] molecules on an solid-solid interface using the extended collapsed atom model for the chain-molecule. It is found that there exist two possible transitions: a continuous transition characterized by a change in molecular interaction between sites of different chain molecules with increasing area per molecule and a sudden transition from an ordered lattice-like state to a liquid-like state due to the lack of interactions between sites of chain molecules on different surfaces with increasing distance between two solid surfaces. The third system displays a smooth change in probability distribution characterized by the increment of gauche structure in the near-tail part of the chain with increasing area per molecule. The analyses of energetic results and chain conformation results demonstrate the characteristic change of chain structure of each system.

A Dynamic Analysis of Technological Innovation Using System Dynamics (시스템 다이나믹스를 이용한 기술혁신의 동태성 분석)

  • Choi Kang-Hwa;Kwak Soo-Il;Kim Soo-Wook
    • Korean Management Science Review
    • /
    • v.23 no.1
    • /
    • pp.87-113
    • /
    • 2006
  • This paper describes a comprehensive approach to examine how technological innovation contributes to the renewal of the firm's competences through its dynamic and reciprocal relationship with R&D and product commercialization. Three theories of technology and innovation (R&D and technological knowledge concept, product-process concept, technological interdependence concept) are used to relate technology and innovation to strategic management. Based on those theories, this paper attempts to identify dynamic relationship between product innovation and process innovation by system dynamics, by investigating the aspect of the dynamic changes of the closed feedback circulation structure in which R&D investments drive technological knowledge accumulation, and such knowledge accumulation actualizes product innovation and process innovation, subsequently resulting in the increase of productivity, customer satisfaction, profit generation, and re-investment on R&D from the created profits. This provides the ability to assess the advantages and disadvantages of different technological innovation strategies and commitments, and the opportunity to explore equilibrium point and suggest a generalized technological innovation model under different industry environment parameters and time-strategies.

Structure and Function of Submarine Forest 2. Population Dynamics of Ecklonia stolonifera as a Submarine Forest-Forming Component

  • Kim, Nam-Gil;Yoo, Jong-Su
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.295-299
    • /
    • 2003
  • The population dynamics of Ecklonia stolonifera was investigated at Tongyeong coastal area in the South Sea of Korea. The blade length and width, stipe length and diameter, mean total length and mean weight were measured from randomly collected fifty individuals in every month. The plants in Tongyeong population were relatively bigger than those of Busan Korea and Aomori Japan in terms of their blade length and width. The population biomass was low in winter and high in spring and summer. The sporangial sori were found from August to December but prominent in September and October. About 90 % of the Tongyeong population was consisted of one- and two-year old plants and the zoosporangial sori were observed mostly in two-year old plants. It was different from the results of Busan and Aomori population in which the zoosporangial sori were observed from the plants older than three years. The new populations were developed from the zoospores of two-year old plants and their generation time was relatively shorter than those of Busan and Aomori.