• 제목/요약/키워드: Structure and Performance Analysis

검색결과 3,997건 처리시간 0.033초

비좌굴 가새를 이용한 대공간 구조물 내진 보강 설계 (Seismic Retrofit of Spatial Structures Using Buckling Restrained Brace)

  • 문희숙;김기철;강주원;이준호
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.105-111
    • /
    • 2018
  • In this study, the seismic performance and behavior characteristics of the upper truss structure of the large stadium are analyzed by nonlinear dynamic analysis. In the nonlinear dynamic analysis, the earthquake records were generated by site response analysis to simulate the nonlinear behavior of the relevant soil condition where the structure is located. Nonlinear dynamic analysis was performed using Perform-3D and the nonlinear properties of the substructure and the superstructure were determined in accordance with KISTEC guideline. According to the analysis results, excessive deformation occurred in the upper truss element, and plastic hinges exceeded the target performance in some members. Buckling-restrained brace is used for seismic retrofit of stadium structures and the analysis results shows the interstory drift satisfies the target performance level with dissipating the seismic energy efficiently.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

Finite element modeling of bond-slip performance of section steel reinforced concrete

  • Liu, Biao;Bai, Guo-Liang
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.237-247
    • /
    • 2019
  • The key issue for the finite element analysis (FEA) of section steel reinforced concrete (SRC) structure is how to consider the bond-slip performance. However, the bond-slip performance is hardly considered in the FEA of SRC structures because it is difficult to achieve in the finite element (FE) model. To this end, the software developed by Python can automatically add spring elements for the FE model in ABAQUS to considering bond-slip performance. The FE models of the push-out test were conducted by the software and calculated by ABAQUS. Comparing the calculated results with the experimental ones showed that: (1) the FE model of SRC structure with the bond-slip performance can be efficiently and accurately conducted by the software. For the specimen with a length of 1140 mm, 3565 spring elements were added to the FE model in just 6.46s. In addition, different bond-slip performance can also be set on the outer side, the inner side of the flange and the web. (2) The results of the FE analysis were verified against the corresponding experimental results in terms of the law of the occurrence and development of concrete cracks, the stress distribution on steel, concrete and steel bar, and the P-S curve of the loading and free end.

Partitioned analysis of nonlinear soil-structure interaction using iterative coupling

  • Jahromi, H. Zolghadr;Izzuddin, B.A.;Zdravkovic, L.
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.33-51
    • /
    • 2008
  • This paper investigates the modelling of coupled soil-structure interaction problems by domain decomposition techniques. It is assumed that the soil-structure system is physically partitioned into soil and structure subdomains, which are independently modelled. Coupling of the separately modelled partitioned subdomains is undertaken with various algorithms based on the sequential iterative Dirichlet-Neumann sub-structuring method, which ensures compatibility and equilibrium at the interface boundaries of the subdomains. A number of mathematical and computational characteristics of the coupling algorithms, including the convergence conditions and choice of algorithmic parameters leading to enhanced convergence of the iterative method, are discussed. Based on the presented coupling algorithms a simulation environment, utilizing discipline-oriented solvers for nonlinear structural and geotechnical analysis, is developed which is used here to demonstrate the performance characteristics and benefits of various algorithms. Finally, the developed tool is used in a case study involving nonlinear soil-structure interaction analysis between a plane frame and soil subjected to ground excavation. This study highlights the relative performance of the various considered coupling algorithms in modelling real soil-structure interaction problems, in which nonlinearity arises in both the structure and the soil, and leads to important conclusions regarding their adequacy for such problems as well as the prospects for further enhancements.

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

SSD(Simultaneous Single Band Duplex) 시스템을 위한 효과적인 자기 간섭 제거 방법 (Effective Self-Interference Cancellation for SSD(Simultaneous Single Band Duplex) System)

  • 안창영;유흥균
    • 한국전자파학회논문지
    • /
    • 제25권2호
    • /
    • pp.189-198
    • /
    • 2014
  • 본 논문에서는 동일 대역에서 동시에 전 이중 통신을 하기 위한 프레임 구조를 사용하는 터보 등화기를 결합한 SSD (Simultaneous Single band Duplex) 시스템을 제안한다. 본 논문에서는 자기 간섭 신호를 보다 효율적으로 제거하기 위하여 프레임 구조를 사용한다. 본 논문에서는 송수신 프레임 구조를 사용할 경우의 시스템의 특성을 분석하기 위하여 프레임 구조를 사용하지 않는 시스템과 성능을 비교하였다. 시뮬레이션 결과로 본 논문에서 제안하는 시스템은 프레임 구조를 사용하였을 경우, 프레임 구조를 사용하지 않았을 경우보다 더 좋은 성능을 내며, 프레임 구조를 사용하는 제안하는 시스템은 더 적은 터보 등화기의 전역 반복으로 프레임 구조를 사용하지 않은 시스템과 유사한 성능을 낼 수 있는 것을 확인하였다.

감쇠시스템을 적용한 라멘조 아파트의 내진성능평가 (Seismic Performance of the Framed Apartment Building Structure with Damping System)

  • 천영수;이범식;박지영
    • 토지주택연구
    • /
    • 제8권3호
    • /
    • pp.181-187
    • /
    • 2017
  • To proactively respond to internal and external changes such as the recent demographic change and rising demand for diversified housing types, this study investigated the framed-structure free plan public house model proposed by the LH to look at the seismic performance of framed-structure apartment according to damper system use through non-linear analysis. The effectiveness thereof was also examined in terms of performance and economy. As a result, the proposed damper system application method to framed-structure free plan public house model was found to meet the performance requirements of the present earthquake-resistant design (KBC2016) and effective to apply to designs. The max response displacement and max response acceleration were compared based on the nonlinear analysis. As a result, the building with damper system showed better earthquake resistance performance than earthquake-resistant structure thanks to the damper system, although the base shear of earthquake-resistant system was reduced by 20% in design. The damper system is expected to help reduce building damage while ensuring excellent earthquake resistance performance. In addition, the framework quantities of earthquake-resistant structure and structure with damping system were compared. As a result, columns were found to reduce concrete amount by about 3.9% and rebar, by about 7.3%. Walls showed about 12.6% reduction in concrete and about 10.7% in rebar. In terms of cost, framework construction cost including formwork and foundation expenses was expected to drop by about 5~6%.

Impact of composite materials on buried structures performance against blast wave

  • Mazek, Sherif A.;Wahab, Mostafa M.A.
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.589-605
    • /
    • 2015
  • The use of the rigid polyurethane foam (RPF) to strengthen buried structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen the buried structures under blast load. The buried structure is considered to study the RPF as structural retrofitting. The Guowei model (Guowei et al. 2010) is considered as a case study. The finite element analysis (FEA) is also used to model the buried structure under shock wave. The buried structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the Guowei model and the proposed numerical model. The RPF improves the buried structure performance under the blast wave propagation.

Performance Analysis of GNSS Navigation Messages in the Structure Viewpoint

  • Noh, Jae Hee;Jo, Gwang Hee;Lee, Jang Yong;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.135-146
    • /
    • 2022
  • In GNSS, the structure of the navigation message has been improved to increase the flexibility of data addition and transmission, and the robustness of message reception in a low SNR environment. GNSS signals currently being broadcast have a different message structure from each other, and the structure can be largely classified into the fixed structure, the packetized structure, and the packetized and fixed pattern structure. This paper analyzes the features of these three types of structures and compares the performance using the indicators. It can be seen that the performance after adopting the packetized structure is superior to those of other structures. In particular, there has been remarkable improvement in terms of the message management and transmission efficiency.

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.