• Title/Summary/Keyword: Structure Steel

Search Result 4,127, Processing Time 0.029 seconds

The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions

  • Fatima, Bounouara;Salem Mohammed, Aldosari;Abdelbaki, Chikh;Abdelhakim, Kaci;Abdelmoumen Anis, Bousahla;Fouad, Bourada;Abdelouahed, Tounsi;Kouider Halim, Benrahou;Hind, Albalawi;Abdeldjebbar, Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.367-383
    • /
    • 2023
  • In this investigation, an improved integral trigonometric shear deformation theory is employed to examine the vibrational behavior of the functionally graded (FG) sandwich plates resting on visco-Pasternak foundations. The studied structure is modelled with only four unknowns' variables displacements functions. The simplicity of the developed model being in the reduced number of variables which was made with the help of the use of the indeterminate integral in the formulation. The current kinematic takes into consideration the shear deformation effect and does not require any shear correction factors as used in the first shear deformation theory. The equations of motion are determined from Hamilton's principle with including the effect of the reaction of the visco-Pasternak's foundation. A Galerkin technique is proposed to solve the differentials governing equations, which enables one to obtain the semi-analytical solutions of natural frequencies for various clamped and simply supported FG sandwich plates resting on visco-Pasternak foundations. The validity of proposed model is checked with others solutions found in the literature. Parametric studies are performed to illustrate the impact of various parameters as plate dimension, layer thickness ratio, inhomogeneity index, damping coefficient, vibrational mode and elastic foundation on the vibrational behavior of the FG sandwich plates.

A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect

  • Jing Bian;Xuhong Zhou;Ke Ke;Michael C.H. Yam;Yuhang Wang;Zi Gu;Miaojun Sun
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.213-227
    • /
    • 2023
  • A passive prismatic-shaped isolation platform (PIP) is proposed to realize enhanced quasi-zero stiffness (QZS) effect. The design concept uses a horizontal spring to produce a tunable negative stiffness and installs oblique springs inside the cells of the prismatic structure to provide a tunable positive stiffness. Therefore, the QZS effect can be achieved by combining the negative stiffness and the positive stiffness. To this aim, firstly, the mathematical modeling and the static analysis are conducted to demonstrate this idea and provide the design basis. Further, with the parametric study and the optimal design of the PIP, the enhanced QZS effect is achieved with widened QZS range and stable property. Moreover, the dynamic analysis is conducted to investigate the vibration isolation performance of the proposed PIP. The analysis results show that the widened QZS property can be achieved with the optimal designed structural parameters, and the proposed PIP has an excellent vibration isolation performance in the ultra-low frequency due to the enlarged QZS range. Compared with the traditional QZS isolator, the PIP shows better performance with a broader isolation frequency range and stable property under the large excitation amplitude.

Redundancy Evaluation of the Composite Two Steel Plate-Girder Bridges (강합성 플레이트 2-거더교의 여유도 평가)

  • Park, Yong-Myung;Joe, Woom-Do-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.611-620
    • /
    • 2006
  • The composite two plate-girder bridges are generally defined as a non-redundant load path structure because the bridge can collapse if one of the two girders is seriously damaged by a fatigue crack. In this paper, a numerical study on the evaluation of the after-fracture redundancy of the composite two-girder bridges was accomplished. The evaluation has been performed on the simple and three-span continuous bridges with I-section cross beams which serve as transverse bracing, and with or without the bottom lateral bracing system. The load carrying capacities of the intact and damaged bridges with or without lateral bracing were evaluated from material and geometric nonlinear analysis, respectively and the redundancy was evaluated for each case. It was acknowledged from the analytical results that both simple and continuous intact two-girder bridges have sufficient redundancy even without lateral bracing, but it takes an important role to improve the redundancy of damaged bridges.

An Experimental Study on the Reinforcement Effect of Installed Micropile under Footing on Dense Sand (조밀한 모래지반의 기초하부에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee, Tae-Hyung;Im, Jong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.191-200
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of 100~300mm, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed under footing(concept of "structure supporting"). With the test results and soil deformation analysis, the reinforcement effect(relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is hoped to demonstrate the improvement of an efficiency and application in the design and construction of micropile.

Mechanical Characteristics of High Tension Bolted Joint Connections using Shear Ring (전단링을 사용한 고장력볼트 이음부의 역학적 특성에 관한 연구)

  • Lee, Seung Yong;Park, Young Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.327-338
    • /
    • 2006
  • Friction type high tension bolted joints is one of the most common steel structure connections and requires significant concerns on axial force of the bolts. However, its high shear capacity is not appropriately considered in design and hence the number of bolts is over-designed than actually required. It is primarily due to a slip-load-based design method. This study, therefore, suggests a new technology of connection using a shear ring, which may reduce the shortcomings from the friction-typed high tension bolted joints and maximize the advantages from the bearing-typed joints. Experimental and numerical studies were performed to compare the capacity of the suggested method with traditional high tension bolted joints. From the results, it is known that the suggested connections has higher bearing capacity than friction-typed high tension bolted joints due to the higher shear resistance from the ring. For further study, it may be necessary to investigate on design parameters including the depth of shear ring, for increased connection capacity.

Time-dependent Parametric Analyses of PSC Composite Girders for Serviceability Design (사용성 설계를 위한 PSC 합성거더교의 시간의존적 변수해석)

  • Youn, Seok-Goo;Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.823-832
    • /
    • 2006
  • To ensure the serviceability requirements of PSC composite girder bridges, it is essential to predict the stresses and deformations of the structure under service load conditions. Stresses and deformations vary continuously with time due to the effects of creep and shrinkage of concrete and relaxation of prestressing steel. The importance of these time-dependent effects is much more pronounced in precast prestressed concrete structures built in stages than in those constructed in one operation. In this paper, time-dependent analyses for PSC composite bridges using 30m standard girders have been conducted considering with the variation of the times of introducing initial prestressing forces and casting concrete. A computer program has been developed for the time-dependent analysis of simple or continuous PSC composite girders and parametric studies are conducted. Based on the numerical results, it is investigated the long-term behaviors of PSC composite girder bridges and discussed the limitations of the current codes for the prestress loss.

Comparison of energy efficiency by electrode materials and structure in bench scale bioelectrochemical anaerobic digestion (Bench scale 생물전기화학적 혐기성소화에서 전극재질 및 구조에 따른 에너지효율 비교)

  • Yang, Hyeon Myeong;Cheon, A In;Kim, Min Ji;Cha, Ji Hwan;Jun, Hang Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.396-396
    • /
    • 2022
  • 생물전기화학적 혐기성소화(Bioelectrochemical anaerobic digestion; BEAD)는 소량의 전압공급을 통해 고농도 하·폐수의 효과적인 처리 및 에너지 회수가 가능한 처리방법으로, 기존 하·폐수처리공정(활성슬러지 및 그 변법)에서 벗어나기 위한 방법 중 하나로 연구되고 있지만, 내부저항 및 전극구조에 따른 물질전달저해로 인해 소규모 연구 위주로 진행되었다. 하지만 stainless steel(SS) 등 내부저항을 완화할 수 있는 전극재료 및 전극구조 개선 연구가 진행됨에 따라 BEAD 적용규모가 증가하는 추세이며, 본 연구에서는 100 L의 용량에서 전극재질 및 구조에 따른 적용적합성을 에너지효율 비교를 통해 평가하였다. 반응조는 비교를 위한 AD, 반응조 내부에 전극을 설치한 BEAD, 반응조 외부에 전극이 포함된 반응조를 추가한 ABEAD로 구성하였으며, AD 및 BEAD는 기계적 교반, ABEAD는 기계적 교반 및 펌프를 통한 bulk 용액 순환으로 물질전달이 이뤄졌다. 또한 BEAD는 탄소계 전극, ABEAD는 SS계 전극을 사용하였으며 두 반응조 모두 0.4 V의 전압을 공급하였다. 실험조건은 유효용량 100 L, 유기물부하율 3 kg/m3/d, HRT 20 days 및 중온소화(35℃)으로 운전하였다. 실험결과 AD, BEAD 및 ABEAD의 유기물제거율은 각각 평균 68.1 %, 68.9 %, 74.9 %로 전극 및 반응조의 분리를 통해 물질전달을 개선한 ABEAD에서 증가하였다. 에너지 생성량의 경우 AD에 비해 BEAD는 평균 229 kJ/d, ABEAD는 309 kJ/d가 추가 생성되었으며 유기물제거율이 높은 ABEAD에서 더 높은 에너지생산이 이뤄졌다. 마지막으로 전압공급으로 인한 에너지소비량은 BEAD는 평균 3.4 kJ/d, ABEAD는 평균 0.9 kJ/d로 전극의 낮은 생물적합성으로 인해 전극에서의 생화학반응이 적은 ABEAD가 에너지소비량이 낮았다. 따라서 본 연구에서는 SS 전극의 사용가능성 및 전극구조 개선에 따른 에너지효율성 향상을 확인할 수 있었으며, 추후 연구에 활용할 수 있을 것으로 기대된다.

  • PDF

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

Study on stability and free vibration behavior of porous FGM beams

  • Bennai, Riadh;Atmane, Redhwane Ait;Bernard, Fabrice;Nebab, Mokhtar;Mahmoudi, Noureddine;Atmane, Hassen Ait;Aldosari, Salem Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.67-82
    • /
    • 2022
  • In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.

Evaluation of horizontal-axis-three-blade wind turbines' behavior under different tornado wind fields

  • Mohamed AbuGazia;Ashraf El Damatty;Kaoshan Dai;Wensheng Lu;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.413-423
    • /
    • 2023
  • Wind turbines are usually steel hollow structures that can be vulnerable to dramatic failures due to high-intensity wind (HIW) events, which are classified as a category of localized windstorms that includes tornadoes and downbursts. Analyzing Wind Turbines (WT) under tornadoes is a challenging-to-achieve task because tornadoes are much more complicated wind fields compared with the synoptic boundary layer wind fields, considering that the tornado's 3-D velocity components vary largely in space. As a result, the supporting tower of the wind turbine and the blades will experience different velocities depending on the location of the event. Wind farms also extend over a large area so that the probability of a localized windstorm event impacting one or more towers is relatively high. Therefore, the built-in-house numerical code "HIW-WT" has been developed to predict the straining actions on the blades considering the variability of the tornado's location and the blades' pitch angle. The developed HIWWT numerical model incorporates different wind fields that were generated from developed CFD models. The developed numerical model was applied on an actual wind turbine under three different tornadoes that have different tornadic structure. It is found that F2 tornado wind fields present significant hazard for the wind turbine blades and have to be taken into account if the hazardous impact of this type of unexpected load is to be avoided.