• 제목/요약/키워드: Structure Equation Model

검색결과 979건 처리시간 0.027초

버스 정류장의 서비스 수준 및 평가모델 구축에 관한 연구 (Establishment about Service Level and Evaluation Model of Bus Stop)

  • 이원규;정헌영
    • 대한토목학회논문집
    • /
    • 제28권2D호
    • /
    • pp.217-225
    • /
    • 2008
  • 버스 정류장은 많은 승객이 이용하기 때문에 편리한 서비스 제공을 위하여 이용자 중심으로 환경을 개선할 필요가 있다. 본 연구는 GAP, IPA, 구조방정식을 이용한 버스 정류장 서비스 수준에 대한 이용자 평가모델 구축을 통하여 그 개선 방향을 제시하고자 하였다. 버스 정류장의 31개 서비스 항목에 대한 GAP 구축에서는 장애인 관련 시설, 버스 이용 관련 정보를 제공하는 항목에서 차이가 높게 나타났다. IPA의 현재 서비스의 경우는 버스 운행 관련 정보, 보조시설, 장애인 지원시설에서 우선 시정이 필요한 것으로 나타났고, 서비스 기대치의 경우는 버스 운행 관련 정보 및 환승시설, 장애인 지원시설에서 지속적 노력이 필요한 것으로 나타났다. 구조방정식에 의한 버스 정류장 서비스 평가모델은 적합도가 좋은 것으로 나타났으며, 버스 정류장 전체 만족도에는 시설 이용 만족보다는 대기 만족 그리고 버스 정류장 시설 이용 만족에는 버스 운행 관련 정보 만족, 보조시설 만족, 버스 운행 정보 및 환승시설, 장애인 지원시설이 상대적으로 영향을 많이 미치는 것으로 나타났다. 그리고 현재 버스 정류장에 대한 전체 만족도가 낮을수록, 전체 만족도에 대한 기대치가 높게 요구되고 있는 것으로 나타났다. 따라서 버스 운행 관련 정보와 장애인 지원시설에 대해서는 적극적인 개선 전략이 필요한 것으로 나타났다.

Efficient determination of combined hardening parameters for structural steel materials

  • Han, Sang Whan;Hyun, Jungho;Cho, EunSeon;Lee, Kihak
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.657-669
    • /
    • 2022
  • Structural materials can experience large plastic deformation under extreme cyclic loading that is caused by events like earthquakes. To evaluate the seismic safety of a structure, accurate numerical material models should be used. For a steel structure, the cyclic strain hardening behavior of structural steel should be correctly modeled. In this study, a combined hardening model, consisting of one isotropic hardening model and three nonlinear kinematic hardening models, was used. To determine the values of the combined hardening model parameters efficiently and accurately, the improved opposition-based particle swarm optimization (iOPSO) model was adopted. Low-cycle fatigue tests were conducted for three steel grades commonly used in Korea and their modeling parameters were determined using iOPSO, which was first developed in Korea. To avoid expensive and complex low cycle fatigue (LCF) tests for determining the combined hardening model parameter values for structural steel, empirical equations were proposed for each of the combined hardening model parameters based on the LCF test data of 21 steel grades collected from this study. In these equations, only the properties obtained from the monotonic tensile tests are required as input variables.

Dynamic analysis of offshore wind turbines

  • Zhang, Jian-Ping;Wang, Ming-Qiang;Gong, Zhen;Shi, Feng-Feng
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.373-380
    • /
    • 2020
  • For large-scale 5MW offshore wind turbines, the discrete equation of fluid domain and the motion equation of structural domain with geometric nonlinearity were built, the three-dimensional modeling of the blade considering fluid-structure interaction (FSI) was achieved by using Unigraphics (UG) and Geometry modules, and the numerical simulation and the analysis of the vibration characteristics for wind turbine structure under rotating effect were carried out based on ANSYS software. The results indicate that the rotating effect has an apparent effect on displacement and Von Mises stress, and the response and the distribution of displacement and Von Mises stress for the blade in direction of wingspan increase nonlinearly with the equal increase of rotational speeds. Compared with the single blade model, the blade vibration period of the whole machine model is much longer. The structural coupling effect reduces the response peak value of the blade displacement and Von Mises stress, and the increase of rotational speed enhances this coupling effect. The maximum displacement difference between two models decreases first and then increases along wingspan direction, the trend is more visible with the equal increase of rotational speed, and the boundary point with zero displacement difference moves towards the blade root. Furthermore, the Von Mises stress difference increases gradually with the increase of rotational speed and decreases nonlinearly from the blade middle to both sides. The results can provide technical reference for the safe operation and optimal design of offshore wind turbines.

병원 재무비율 지표들 간의 구조적인 관계 분석 (An Analysis of Structural Relationships among Financial Indicators of Hospitals in Korea: Applying Structural Equation Modeling(SEM))

  • 정민수;이건형;최만규
    • 보건행정학회지
    • /
    • 제18권2호
    • /
    • pp.19-38
    • /
    • 2008
  • Financial ratios are key indicators of an organization's financial and business conditions. Among various financial indicators, profitability, financial structure, financial activity and liquidity ratios are frequently used and analyzed. Using the structural equation modeling(SEM) technique, this study examines the structural causal relationships among key financial indicators. Data for this study are taken from complete financial statements from 142 hospitals that passed the standardization audit undertaken by the Korean Hospital Association from 1998 to 2001 for the purpose of accrediting teaching hospitals. In order to improve comparability, ratio values are standardized using the Blom's normal distribution. The final model of the SEM has four latent constructs: financial activity(total asset turnover, fixed asset turnover), liquidity(current ratio, quick ratio, collection period), financial structure(total debt to equity, long-term debt to equity, fixed assets to fund balance), and profitability(return on assets, normal profit to total assets, operating margin to gross revenue, normal profit to gross revenue). While examining several model fit indices(Chi-square (df) = 178.661 (40), likelihood ratio=4.467, RMR=.11, GFI=.849, RMSEA=.157), the final SEM we employed shows a relatively good fit. After examining the path coefficient of the constructs, the financial structure of the hospital affects the hospital's profitability in a statistically significant way. A hospital which utilizes its liabilities, more specifically fixed liabilities, and makes a stable investment decision for fixed assets was found to have a higher profitability than other hospitals. Then, the standard path coefficients were examined to directly compare the influence of variables. It was found that there were no statistically significant path coefficients among constructs. When it comes to variables, however, statistically significant relationships were found. between. financial activity and. fixed. asset turnover, and between profitability and normal profit to gross revenue. These results show that the observed variables of fixed asset turnover and normal profit to gross revenue can be used as indicators representing financial activity and profitability.

Brinkman Penalization Method를 통한 복잡한 3D 형상 주위의 음향 전파 연구 (COMPUTATION OF SOUND SCATTERING IN 3D COMPLEX GEOMETRY BY BRINKMAN PENALIZATION METHOD)

  • 이소현;이진범;김종욱;문영준
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.103-109
    • /
    • 2012
  • Sound scattering in 3D complex geometry is difficult to model with body-fitted grid. Thus Brinkman Penalization method is used to compute sound scattering in 3D complex geometry. Sound propagation of monitor/TV is studied. The sound field for monitor/TV is simulated by applying Brinkman Penalization method to Linearized Euler Equation. Solid Structure and ambient air are represented as penalty terms in Linearized Euler Equation.

콘크리트의 유동성에 미치는 타설진동의 영향 (Effects of Internal Vibration on Flowability of Fresh Concrete)

  • 최수경
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.77-85
    • /
    • 2000
  • Various concretes are used for construction works depending on the types of structure, building element and method of construction. An internal vibration work is one of the important processes for adequately pouring various concrete into a certain form. This study was undertaken to find out the effects of internal vibration on flowability of fresh concrete by concrete flow test under eight conditions of vibration. Presumable equation models also were created to show all vibration effects without regard to kinds of concrete. As the results of this study, the degree of vibration effects were varied according to the properties of concrete. Acceleration amplitude of vibration that applied to fresh concrete was effective value of the properties of vibration in a viewpoint of flowability. Moreover, This research presents the presumed equation models including variables created by acceleration amplitude and measuring value of vibrated concrete flow test. These models are presumable methods of vibration effects regardless of kinds of concrete.

연산회로 신경망 (Computational Neural Networks)

  • 강민제
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.80-86
    • /
    • 2002
  • 아날로그 합산과 선형방정식을 풀 수 있는 신경망구조가 제안되었다. 계산에너지함수에 근거하여 가중치를 구하는 Hopfield 신경망모델을 사용하였다. 아날로그 합산과 선형방정식은 각각 Hopfiled의 A/D컨버터와 선형프로그래밍회로망을 이용하여 설계되었다. 시뮬레이션은 Pspice 프로그램을 이용하였으며, 그 결과들은 대부분 전체극소점으로 수렴함을 보였다.

  • PDF

세포-시스템 차원의 혈류역학적 심혈관 시스템 모델의 개발 (Development of an integrative cardiovascular system model including cell-system and arterial network)

  • 심은보;전형민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.542-546
    • /
    • 2008
  • In this study, we developed a whole cardiovascular system model combined with a Laplace heart based on the numerical cardiac cell model and a detailed arterial network structure. The present model incorporates the Laplace heart model and pulmonary model using the lumped parameter model with the distributed arterial system model. The Laplace heart plays a role of the pump consisted of the atrium and ventricle. We applied a cellular contraction model modulated by calcium concentration and action potential in the single cell. The numerical arterial model is based upon a numerical solution of the one-dimensional momentum equations and continuity equation of flow and vessel wall motion in a geometrically accurate branching network of the arterial system including energy losses at bifurcations. For validation of the present method, the computed pressure waves are compared with the existing experimental observations. Using the cell-system-arterial network combined model, the pathophysiological events from cells to arterial network are delineated.

  • PDF

Dynamic analysis of a transversely isotropic non-classical thin plate

  • Fadodun, Odunayo O.;Borokinni, Adebowale S.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • 제25권1호
    • /
    • pp.25-38
    • /
    • 2017
  • This study investigates the dynamic analysis of a transversely isotropic thin plate. The plate is made of hyperelastic John's material and its constitutive law is obtained by taken the Frechect derivative of the highlighted energy function with respect to the geometry of deformation. The three-dimensional equation governing the motion of the plate is expressed in terms of first Piola-Kirchhoff's stress tensor. In the reduction to an equivalent two-dimensional plate equation, the obtained model generalizes the classical plate equation of motion. It is obtained that the plate under consideration exhibits harmonic force within its planes whereas this force varnishes in the classical plate model. The presence of harmonic forces within the planes of the considered plate increases the natural and resonance frequencies of the plate in free and forced vibrations respectively. Further, the parameter characterizing the transversely isotropic structure of the plate is observed to increase the plate flexural rigidity which in turn increases both the natural and resonance frequencies. Finally, this study reinforces the view that non-classical models of problems in elasticity provide ample opportunity to reveal important phenomena which classical models often fail to apprehend.

Determination of active failure surface geometry for cohesionless backfills

  • Altunbas, Adlen;Soltanbeigi, Behzad;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.983-1001
    • /
    • 2017
  • The extent by which economy and safety concerns can be addressed in earth retaining structure design depends on the accuracy of the assumed failure surface. Accordingly, this study attempts to investigate and quantify mechanical backfill properties that control failure surface geometry of cohesionless backfills at the active state for translational mode of wall movements. For this purpose, a small scale 1 g physical model study was conducted. The experimental setup simulated the conditions of a backfill behind a laterally translating vertical retaining wall in plane strain conditions. To monitor the influence of dilative behavior on failure surface geometry, model tests were conducted on backfills with different densities corresponding to different dilation angles. Failure surface geometries were identified using particle image velocimetry (PIV) method. Friction and dilation angles of the backfill are calculated as functions of failure stress state and relative density of the backfill using a well-known empirical equation, making it possible to quantify the influence of dilation angle on failure surface geometry. As a result, an empirical equation is proposed to predict active failure surface geometry for cohesionless backfills based on peak dilatancy angle. It is shown that the failure surface geometries calculated using the proposed equation are in good agreement with the identified failure surfaces.