• Title/Summary/Keyword: Structure Equation Model

Search Result 980, Processing Time 0.035 seconds

Reliability Improvement of In-Place Concreter Strength Prediction by Ultrasonic Pulse Velocity Method (초음파 속도법에 의한 현장 콘크리트 강도추정의 신뢰성 향상)

  • 원종필;박성기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.97-105
    • /
    • 2001
  • The ultrasonic pulse velocity test has a strong potential to be developed into a very useful and relatively inexpensive in-place test for assuring the quality of concrete placed in structure. The main problem in realizing this potential is that the relationship between compressive strength ad ultrasonic pulse velocity is uncertain and concrete is an inherently variable material. The objective of this study is to improve the reliability of in-place concrete strength predictions by ultrasonic pulse velocity method. Experimental cement content, s/a rate, and curing condition of concrete. Accuracy of the prediction expressed in empirical formula are examined by multiple regression analysis and linear regression analysis and practical equation for estimation the concrete strength are proposed. Multiple regression model uses water-cement ratio cement content s/a rate, and pulse velocity as dependent variables and the compressive strength as an independent variable. Also linear regression model is used to only pulse velocity as dependent variables. Comparing the results of the analysis the proposed equation expressed highest reliability than other previous proposed equations.

  • PDF

A Simplified Bridge-vessel Collision Model Considering with the Rotational Motions of the Vessel (선체의 회전을 고려한 선박과 교량의 간이충돌모델)

  • Lee, GyeHee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.43-49
    • /
    • 2011
  • In this study, to analyze the collision behaviors of the bridge super-structure and the vessel which the collision point is located far from its rotation center such as bridge of a vessel and equipments on a barge, the simplified collision model was proposed. The model was configured to denote the mass, stiffness and the nonlinear behaviors of the bridge and the vessel. The nonlinear equation of motions of the proposed model were numerically solved by 4th order Runge-Kutta method. The parametric studies were performed for various collision conditions by the standardized Korean barge vessel in term of barge width, and its effects to the maximum collision load of bridge were analyzed.

Diagnosing the stability for the model of a system of equations (모형체계의 안정성 진단)

  • 김태호;김영권;한정혜
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.65-81
    • /
    • 1998
  • Simultaneous equation models, increasingly used in many detailed analyses, tend to get larger and more sophisticated to describe the structure of the study area to be close to the actual situations. In setting up such a system of equations, statistical results and simulation performance of the model as a whole may be meaningless and unrepresentative of the real world due to a structural instability that is built into the model when the equations are combined and solved simultaneously. Even though the use and subsequent analysis of an unstable system are likely to mislead us, most of the studies that take the simultaneous equation approaches neglect such a serious problem. Thus it is necessary to illustrate how to check the stability problem and apply to the actual model, then investigate how such as analysis is able to provide useful information about the structural characteristics of the model from the dynamic viewpoint.

  • PDF

Estimate of Wave Overtopping Rate on Vertical Wall Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 직립구조물의 월파량 산정)

  • Kwak, Moon Su;Kobayashi, Nobuhisa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2021
  • This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.

A NUMERICAL ALGORITHM FOR ELASTO-PLASTIC MATERIAL DEFORMATION

  • HWANG HYUN-CHEOL
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.589-602
    • /
    • 2005
  • We present the numerical algorithm for the model for high-strain rate deformation in hyperelastic-viscoplastic materials based on a fully conservative Eulerian formulation by Plohr and Sharp. We use a hyperelastic equation of state and the modified Steinberg and Lund's rate dependent plasticity model for plasticity. A two-dimensional approximate Riemann solver is constructed in an unsplit manner to resolve the complex wave structure and combined with the second order TVD flux. Numerical results are also presented.

Vibration Analysis of a Valve Model with Nonlinear Stiffness (비선형 강성을 고려한 밸브 모델의 진동 해석)

  • 이수일;주재만;김태식;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.143-147
    • /
    • 1998
  • In this study, nonlinear stiffness characteristics of a discharge valve in a small hermetic compressor was considered. It was approximated, with piecewise-linearity, and cubic or quintic nonlinearity by the static load-displacement experimental results. Based on the fluid-structure interaction effects and mass flow rate, the derived 1-DOF equation of motion for the valve model was analyzed. Finally, the dynamic response of the discharge valve was studied with parameters such as the ratio of the running frequency of the compressor to the linear natural frequency of the valve.

  • PDF

An Experimental Study of the Dynamic Characteristics of Viscous Fluid Dampers (점성유체 감쇠기의 동특성에 관한 실험적 연구)

  • 권형오
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.243-248
    • /
    • 1998
  • This study was performed to obtain a numerical model for a viscous fluid damper from an experimental testing. The input signals for displacement were chosen as two types : a triangular and a sinusoidal forms. The performing test parameters were the area of the resistant plate, relative velocity between resistant plate and base plate, oil film thickness of the viscous fluid, but the temperature effect was neglected. The numerical model was established by assuming an non-Newtonian fluid behavior. The test results were summarized by the equation of F= 0.0308(ν/d)0.5125. Using the obtained for a real structure design was introduced.

  • PDF

On a Substructure Synthesis Having Non-Matching Nodes (비부합 절점으로 이루어진 구조물의 합성과 재해석)

  • 정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • Actual engineering structure is frequently very complex, and parts of structure are designed independently by different engineers. Also each structure contains so many degree of freedom. For these reason, methods have been developed which permits the structure to be divided into components or substructures, with analysis being done on a small substructure in order to obtain a full structural system. In such case, because of different mesh size among finite element model (FEM) or different matching points among FEM models and experimentally obtained models, their interfacing points may be non-matching. Solving this non-matching problem is useful to other application such as structural dynamic modification or model updating. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint, and interface displacement is approximated by polynomial presentation. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalue of whole structure are calculated using the determinant search method. The number of degree of freedom in the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Some numerical simulation is performed to show usefulness of synthesis method.

  • PDF

Fatigue Life Prediction of a Laser Peened Structure Considering Model Uncertainty (모델 불확실성을 고려한 레이저 피닝 구조물의 피로 수명 예측)

  • Im, Jong-Bin;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1107-1114
    • /
    • 2011
  • In this paper, the fatigue life of a laser peened structure was predicted. In order to calculate residual stress induced by laser peening finite element simulation was carried out. Modified Goodman equation was used to consider the effect of compressive residual stress induced by laser peening in fatigue analysis. In addition, additive adjustment factor approach was applied to consider S-N curve model uncertainty. Consequently, the reliable bounds of the predicted fatigue life of the laser peened structure was determined.

Consumers' Commitment and Its Multi-Dimensional Structure (소비자 관계몰입의 다차원성에 관한 연구)

  • 이수진
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.527-538
    • /
    • 2004
  • Despite the importance of and the vast empirical research attention devoted to commitment in channel relationships, several unresolved issues remain. First, although the term commitment is often measured as a single trait, measuring commitment as a single dimension, is problematic for the epistemological depth and methodological sophistication of the instrument. Second, consumer research has seldom considered the complex nature of commitment in consumer markets. This study hypothesized that the multidimensionality of commitment can be separately identified and that the multidimensional factors-LY(Loyalty), ID(Identity), INT(Internalization)-interact differently from those in inter-fun relationships. A conceptualization of commitment holds LY as a central mediator between ID and INT in this study. The data was collected from 491 retail consumers. For the measurement model test, the three-factor model was selected as representing the underlying factor structure in the sample data and the multidimensionality of commitment was confirmed. The conceptualized model, holding LY as a mediator of ID and INT, performed better than the competing model with INT as mediator of ID and LY. The results provide a theoretical contribution in furthering the research on relationship marketing with consumers by suggesting that the consumer commitment structure be presented differently from the organizational commitment.