• Title/Summary/Keyword: Structure Dynamic Design

Search Result 1,783, Processing Time 0.029 seconds

Ship Collision Analysis with Offshore Structure (선박과 해양 구조물의 충돌 해석)

  • Kim, Jong-Sung;Jung, Hyun;Ko, Jae-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.169-176
    • /
    • 2004
  • Offshore structure crossing navigation waterways must not only be designed to resist gravity, wind, and earthquake load, but also be capable of resisting ship and barge collision load. Current specifications for offshore structure design provide empirical relationships for computing impact loads generated during barge collision, however, these relationships are based on the limited experimental data. In this paper, the dynamic finite element analysis is used to computing force for vessel collision scenarios to offshore structures. Results obtained from the ANSYS/LS-DYNA are compared to AASHTO bridge design specifications.

  • PDF

Sliding Mode Controller Design Based On The Fuzzy Observer For Uncertain Nonlinear System (불확실한 비선형 시스템의 퍼지 관측기 기반의 슬라이딩 모드 제어기 설계)

  • 서호준;박장현;허성희;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.284-284
    • /
    • 2000
  • In adaptive fuzzy control systems. fuzzy systems are used to approximate the unknown plant nonlinearities. Until now. most of the papers in the field of controller design for nonlinear system using fuzzy systems considers the affine system with fixed grid-rule structure based on system state availability. This paper considers observer-based nonlinear controller and dynamic fuzzy rule structure. Adaptive laws for fuzzy parameters for state observer and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Evaluation and Application of Dynamic Soil Properties for SSI Analysis (지반-구조물 상호작용해석시 동적지반특성의 평가 및 적용)

  • Lee, Myung Jae;Shin, Jong Ho;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.103-112
    • /
    • 1990
  • This study examines the characteristics of soil behavior which includes many uncertainties in seismic design, evaluates the dynamic soil properties and studies the soil-structure interaction to generalize the applicability and economy of the available sites. An example analysis is performed for soil-structure system response assuming a containment structure built on site which includes soil layers using both elastic halfspace analysis and FEM analysis against the seismic loads from the actual design. This exercise is performed as a part of the safety analysis and economic assessment of the nuclear power plant built on soils. It includes the preparation of computer program capable of incorporating large nonlinearity in the analysis, resonable evaluation procedures to determine input soil data. Nonlinear FEM analysis of Seed and Idriss model is found suitable for the accurate analysis of dynamic response of soils. Linear FEM analysis using dynamic soil properties at strain level obtained by one-dimensional seismic response, and elastic half-space analysis using dynamic soil properties at strain level under static loads are recommended to evaluate the dynamic soil properties.

  • PDF

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.

Design Optimization of Blast Resistant CFRP-steel Composite Structure Based on Reliability Analysis (신뢰성 해석에 의한 내폭 CFRP-steel 복합구조의 최적화 설계)

  • Kim, Jung Joong;Noh, Hyuk-Chun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.10-16
    • /
    • 2012
  • This study presents the effectiveness of a composite structure at improving blast resistance. The proposed composite structure consists of carbon fiber reinforced polymer (CFRP) and steel layers. While CFRP layer is used for blast energy reflection due to its high strength, steel layer is used for blast energy absorption due to its high ductility. A dynamic model is used to simulate the elastoplastic behavior of the proposed composite structure subject to blast load. Considering the magnitude variations of a blast event, the probability of failure of each layer is evaluated using reliability analysis. By assigning design probability of failure of each layer in the composite structure, the thickness of layers is optimized. A case study for the design of CFRP-steel composite structure subjected to an uncertain blast event is also presented.

Dynamic Analysis of the High-Speed Spindle Structure for Machining Center (머시닝센터용 고속주축 구조물의 동특성 해석)

  • 하재용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.40-45
    • /
    • 1996
  • this paper presents a dynamic analysis of the high-speed spindle system for vertical machining center using finite element techniques. The computed natural frequencies are compared with the measured frequencies obtained from experimental modal analysis. The results show that the bending and twisting deformations of the spindle housign dominated in the lowest modes owing to low dynmic stiffness of the housing structure. The design parameters used in the analysis are:(a) panel thickness of the housing (b) height of the housing and (c) spindle-to-column distance of the housing. Through sensitivity analysis and optimizing simulation considering design constraints an optimal design of the spindle system has been obtained.

  • PDF

Inelastic displacement-based design approach of R/C building structures in seismic regions

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.573-594
    • /
    • 2001
  • A two-level displacement-based design procedure is developed. To obtain the displacement demands, elastic spectra for occasional earthquakes and inelastic spectra for rare earthquakes are used. Minimum global stiffness and strength to be supplied to the structure are based on specified maximum permissible drift limits and on the condition that the structure responds within the elastic range for occasional earthquakes. The performance of the structure may be assessed by an inelastic push-over analysis to the required displacement and the evaluation of damage indices. The approach is applied to the design of a five-story reinforced concrete coupled wall structure located in the most hazardous seismic region of Argentina. The inelastic dynamic response of the structure subjected to real and artificially generated acceleration time histories is also analyzed. Finally, advantages and limitations of the proposed procedure from the conceptual point of view and practical application are discussed.

Design of silicon-on-nothing structure based on multi-physics analysis

  • Song, Jihwan;Zhang, Linan;Kim, Dongchoul
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.3
    • /
    • pp.225-231
    • /
    • 2016
  • The formation of silicon-on-nothing (SON) structure during an annealing process from the silicon substrate including the trench structures has been considered as an effective technique to construct the structure that has an empty space under the closed flat surface. Previous studies have demonstrated the mechanism of the formation of SON structure, which is based on the surface diffusion driven by the minimization of their surface energy. Also, it has been fragmentarily shown that the morphology of SON structure can be affected by the initial design of trench (e.g., size, number) and the annealing conditions (e.g., temperature, pressure). Based on the previous studies, here, we report a comprehensive study for the design of the cavity-embedded structure (i.e., SON structure). To do this, a dynamic model has been developed with the phase field approach. The simulation results represent that the morphology of SON structures could be detailedly designed, for example the position and thickness of cavity, the thickness of top and bottom layer, according to the design parameters. This study will give us an advantage in the effective design of SON structures.

Radio Link Modem System Architecture Design for Korean Tactical Data Link System Implementation (한국형 전술데이터링크 시스템 구현을 위한 무선모뎀 시스템 설계)

  • Choi, Hyo-Ki;Jang, Ho-Joon;Song, Young-Hwan;Jang, Dhong-Woon;Joo, Jae-Woo;Seo, Nan-Sol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.789-796
    • /
    • 2013
  • Next Generation Weapon system from the center of the platform to share information in real-time Network Centric Warfare(NCW: Network Centric Warfare) has been changed. Data link system is defined as a network. That is, all in real-time battlefield information is to enable sharing. Data link system is classified as a precision strike, Monitoring/control, control of a Patriot missile battery systems. These systems are most effective in a Joint warfare and precision strike. Data Link Systems(Data Communications) implementation is accomplished by using the KDLM(Korean Data Link Modem) and Radio Transceiver. KDLM is operated in conjunction with the legacy Radios(re-using fielded HF/VHF/UHF radio systems). In this paper, we describe in terms of KDLM system design. In this paper, the proposed design structure is how to effectively interact with legacy various radio. First, The results provide an analysis of that Dynamic TDMA system and apply modem structure. Radio characteristics data are necessary for an effective TDMA system design. This article analyzes the test results and describes the structure to improve the receive performance.

Structural Integrity Assessment of the Internal Structure (원전 기기 내부구조물에 대한 구조건전성평가)

  • Lee, Han-Hee;Choi, Jin-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3497-3500
    • /
    • 2007
  • The internal structure is subjected to dynamic analysis due to the structural integrity. The internal structure shall be installed in the vertical hole call IR1 of reactor core. In order to verify the deflection of the internal structure, the mode and response spectrum analysis of the internal structure was performed. The natural frequency of the internal structure is 11.6 Hz(mode 1 and 2) and deflections of the internal structure are less than values of allowable design (3.2 mm).

  • PDF