• 제목/요약/키워드: Structure Deformation

검색결과 2,323건 처리시간 0.039초

광섬유 브래그 격자 센서를 이용한 텐서그리티 구조물의 변형 계측 (Deformation Measuring of Tensegrity Structure by Optical Fiber Bragg Grating Sensor)

  • 이승재
    • 한국공간구조학회논문집
    • /
    • 제8권6호
    • /
    • pp.95-100
    • /
    • 2008
  • 본 연구는 광섬유 브래그 격자 센서를 이용한 텐서그리티 구조물의 실시간 모니터링 결과를 보고한다. 기존의 간접적인 계측방식에서 탈피하여 케이블에 직접적으로 센서를 부착하여 케이블의 변형율을 측정하였다. 우선, 텐서그리티 구조모형을 시험체를 제작하고, 시험체에 광섬유 브래그 격자 센서를 부착하여 외력을 가하였다. 그 결과 하중의 증가에 따라 광섬유 브래그 격자센서는 케이블의 변형을 정밀히 측정할 수 있었으며, 계측의 안정성 측면에서 탁월함을 알 수 있었다. 또한 텐서그리티 구조물과 같이 케이블로 구성된 구조물의 변형측정 및 상시모니터링에는 광섬유 브래그 격자 센서가 유용함을 확인하였다.

  • PDF

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

파형강 지중구조물의 제특성 연구 (A Study on Characteristic of Underground Corrugated Steel Structure)

  • 박연수;서병철;김병하;박선준
    • 한국강구조학회 논문집
    • /
    • 제13권6호
    • /
    • pp.693-702
    • /
    • 2001
  • 파형강 구조물과 같은 가요성관의 안정성 평가시에는 변형량의 검토가 무엇보다도 중요하다고 생각된다. 파형강 구조물의 수평 변형량은 토피고의 변화에 관계없이 관경이 커질수록 증가함을 알 수 있다. 병렬시공시에 대한 변형 감소량을 토피고 및 관종별로 내 외측으로 구분하여 단일 배치시와 비교 했는데, 변형 감소량이 큰 내측관에 대하여 관경이 1000mm인 경우를 살펴보면, 토피고 10m인 경우가 토피고 0.5m인 경우에 비해 변형 감소량이 약 4배 크게 나타남을 알 수 있었다. 또 관경의 종류 별로 변형 감소량을 비교해 보면 관경이 3000mm인 경우가 관경 1000mm인 경우에 비해 변형 감소량이 약 13~15배 크게 나타났다. 그리고 내측관과 외측관에 대하여 비교해 보면 내측관의 경우가 외측관의 경우에 비해 1.6~2.0배 정도 더 변형 감소량이 크게 나타났다.

  • PDF

온습도 변화에 따른 철도차량 바닥재의 변형 (Deformation of the floor structure of railway vehicle depending on temperature and humidity)

  • 신범식;김명수;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1002-1007
    • /
    • 2008
  • The floor structure of railway vehicle can deflect and warp due to variation of temperature and humidity at the inside and outside of vehicle. In this study, its temperature and humidity characteristics was investigated experimentally for beam and plate specimen and numerically for the floor structure assembly. The temperature and humidity characteristics of a part were measured and the deformation and stress distribution of the floor structure were calculated using a commercial software. And the warp deformation of the plywood was measured experimentally. The results show that the temperature and humidity effects on the floor structure are the important factor to decide the strength and the quality of the floor structure of railway vehicles.

  • PDF

얇은 박스형 용접구조물의 용접변형 해석 (Welding Distortion Analysis of a Laser Welded Thin Box Structure)

  • 김충기;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • 제25권5호
    • /
    • pp.72-77
    • /
    • 2007
  • Prediction and control of the thermal distortion is particularly important for the design and manufacture of welded thin metal structure. In this study, numerical computations are performed to analyze effect of structure section shape and weld line location on distortion. In addition, this study aims to develop a thermal elasto-plastic simulation using finite element method to predict distortion, with particular emphasis on bending deformation generated in outline welding of a thin box structure. From the numerical analysis, it was revealed that the section shape and weld line location play an important role on the welding distortion. Among 3 types of section shape design proposed in this study, the least deformation remained in the two path welded structure.

FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석 (Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling)

  • 문지후;김대겸
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

아크 점용접 구조물의 정밀 용접 열변형 해석에 관한 연구 (I) -온도 모니터링 및 열전달 모델 정립- (The Analysis of Welding Deformation in Arc-spot Welded Structure (I) - Temperature Monitoring and Heat Transfer Analysis -)

  • 이원근;장경복;강성수;조상명
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.544-550
    • /
    • 2002
  • Arc-spot welding is generally used in joining of precise parts such as case and core in electronic compressor. It is important to control joining deformation in electronic compressor because clearance control in micrometer order is needed for excellent airtightness and anti-nose. The countermeasures far this deformation in field have mainly been dependent on the rule of try and error by operator's experience because of productivities. For control this deformation problem without influence on productivities, development of exact simulation model should be needed. In this study, to solve this deformation problem in arc-spot welded structure with case and core, we intend to make a simulation model that is able to predict deformation in precise order by tuning and feedback between sensing data and simulation results. This paper include development of heat input model for arc-spot welding, temperature monitoring and make a heat transfer model using sensing data in product.

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

포인트 클라우드 기반 선체 구조 변형 탐지 알고리즘 적용 연구 (Application of Point Cloud Based Hull Structure Deformation Detection Algorithm)

  • 송상호;이갑헌;한기민;장화섭
    • 대한조선학회논문집
    • /
    • 제59권4호
    • /
    • pp.235-242
    • /
    • 2022
  • As ship condition inspection technology has been developed, research on collecting, analyzing, and diagnosing condition information has become active. In ships, related research has been conducted, such as analyzing, detecting, and classifying major hull failures such as cracks and corrosion using 2D and 3D data information. However, for geometric deformation such as indents and bulges, 2D data has limitations in detection, so 3D data is needed to utilize spatial feature information. In this study, we aim to detect hull structural deformation positions. It builds a specimen based on actual hull structure deformation and acquires a point cloud from a model scanned with a 3D scanner. In the obtained point cloud, deformation(outliers) is found with a combination of RANSAC algorithms that find the best matching model in the Octree data structure and dataset.

Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction

  • Hashimoto, Gaku;Ono, Kenji;Okuda, Hiroshi
    • Interaction and multiscale mechanics
    • /
    • 제5권3호
    • /
    • pp.287-318
    • /
    • 2012
  • We apply a partitioned-solution (iterative-staggered) coupling method based on a fixed Eulerian mesh with the level set function to a large-deformation fluid-structure interaction (FSI) problem where a large-deformable thin structure moves in a high-speed flow field, as an airbag does during deployment. This method combines advanced fluid and structure solvers-specifically, the constrained interpolation profile finite element method (CIP-FEM) for fluid Eulerian mesh and large-deformable structural elements for Lagrangian structural mesh. We express the large-deformable interface as a zero isosurface by the level set function, and introduce virtual nodes with level sets and structural normal velocities to generate the level set function according to the large-deformable interfacial geometry and enforce the kinematic condition at the interface. The virtual nodes are located in the direction normal to the structural mesh. It is confirmed that application of the method to unfolded airbag deployment simulation shows the adequacy of the method.