• Title/Summary/Keyword: Structure & Administration

Search Result 1,405, Processing Time 0.027 seconds

A Servicism Model of the New Economy System (서비스주의 경제시스템의 구조와 운용 연구)

  • Hyunsoo Kim
    • Journal of Service Research and Studies
    • /
    • v.11 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • This study was conducted to derive a model of a sustainable economic system for humanity in the era of service economy that requires a paradigm shift. A new long-term sustainable development model has been built on the basis of thousands of years of economic operation experience. Currently, the world is operating the capitalism as the main economic system because there is no better alternative, and the changing economic and social environment such as the advent of the 4th Industrial Revolution is exacerbating the problems of the capitalism, such as job shortages and inequality. In this study, we analyzed the economic management system experienced by human society, and derived an economic system model that is ideal for the modern and future society and is sustainable in the long term. The conditions for a long-term sustainable economic system were presented first. It must be a model that can solve the problems of the current economic system. It must be a model that is faithful to the characteristics of the modern economic society and the nature of the economy itself. And since the new economic system is for humanity, it must be based on the common principles of human society. It should be a model that continuously guarantees core values such as equality and freedom required by human society. After analyzing the problems of the current economic system and analyzing the conditions required for the new system, the basic axioms that the new economic system should be based on were presented, and a desirable model was derived based on this. The structure of the derived model and the specific operation model were presented. In the future, research is needed to specify the operational model so that this model can be settled well in different environments for each country.

A Study on Consumer Eco-friendly Behavior Utilizing the Photovoice Methodology : Focus Group Study (포토보이스(Photovoice) 기법을 활용한 소비자의 친환경 행동에 대한 연구 : Focus Group Study)

  • Lee, Il-han
    • Journal of Venture Innovation
    • /
    • v.6 no.4
    • /
    • pp.63-81
    • /
    • 2023
  • The purpose of this study was to utilize the Photovoice qualitative research method targeting university students. Through this method, we aimed to understand the perceptions of environmental issues, environmental barriers, and eco-friendly behaviors among university students. By employing the Photovoice methodology, we sought to share the perspectives of university students on eco-friendly behaviors, explore the motivations and manifestations of these behaviors, and reflect on their significance. The ultimate goal was to provide practical suggestions for fostering eco-friendly behaviors through an in-depth examination of the visual narratives and reflections of university students. Under the overarching theme of the environment, participants were given the opportunity to individually select and explore three specific sub-themes: 'My Concept of the Environment,' 'Environmental Barriers in My Life,' and 'My Eco-friendly Behaviors.' Participants engaged in the process of capturing photographs from their daily lives related to each theme, expressing their thoughts and perspectives through the selected images. Subsequently, they shared and discussed their insights, actively listening to the opinions of others in the group. The results of this study revealed several key findings. Firstly, participants assigned meaning to the photographs they selected by directly capturing aspects related to the environment, such as 'waste,' 'discomfort,' 'fine dust=environmental pollution,' and 'indifference.' Secondly, participants attributed meaning to the selected photographs related to environmental barriers, associating them with concepts like 'invisibility,' 'apathy,' 'social stigma,' 'inefficiency,' and 'compulsion.' Lastly, participants ascribed significance to photographs selected in the context of eco-friendly behaviors, with themes like 'recycling,' 'energy conservation,' 'reuse,' and 'reducing the use of disposable items.' Based on these research findings, the confirmation of the V-A-B (Values-Attitudes-Behavior) model was established. It was observed that consumers structure a hierarchical relationship between their personal values, attitudes, and behaviors. The study also identified clear impediments in consumers' daily lives hindering the practice of eco-friendly behaviors. In light of this, the research highlighted the need for strategies to address the discomfort or inconvenience associated with implementing environmentally friendly consumer behaviors. The implications of the study suggest that interventions or solutions are necessary to alleviate barriers and promote a more seamless integration of eco-friendly practices into consumers' daily routines.

A Case Study on the Success Factors of Overseas Agricultural Startup: Focusing on the Case of Banana Farm in Cote d'Ivoire (해외 농업스타트업(Agricultural Startup) 성공요인에 관한 사례연구: 'C사'의 제2창업기(바나나 팜 개발사례)를 중심으로)

  • Jin hwan Park;Sang soon Kim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.61-79
    • /
    • 2023
  • This study is a case study of overseas banana farms as a global agricultural startup that has hardly been attempted so far in terms of paradigm shift in the industry, beyond regional limitations. It was researched for the purpose of revealing the success factors of 'global agricultural startup' in terms of business process, entrepreneurship, and management dimensions learned through direct participation and observation at the local level. In order to study global agricultural startups, this study also conducted a comparative analysis of global startups (global startups) and global agricultural startups(global agricultural startups). In fact, the analysis consists of 'definition', 'components', and 'success factors', and we want to confirm the difference between the two concepts that can be distinguished. The case analysis tried to maximize the advantages of 'participatory action research' by directly observing and experiencing banana farms. In the case of banana farm cases, by dividing them into preparation process for farm development and farm development and management process, various variables considered in farm management were explained through the whole process of farm management. Through the process of overcoming and responding to specific failure cases, we tried to secure the reliability and validity of the research, and the case studies related to entrepreneurship, management, and organization analyzed by applying them by subdividing them into theoretical areas belonging to components and management that were theorized in existing preceding studies. This study is almost the first study on the process of creating a local entry business by directly moving the head office overseas rather than entering overseas agriculture as a subsidiary, joint venture or overseas corporation. In particular, it is a unique case that corresponds to agriculture in terms of region(Africa), scale(startup), and industry that have not been introduced so far as a global agricultural startup. In terms of entrepreneurship, it also concretely exemplified how entrepreneurship components such as innovativeness, risk-taking propensity, proactiveness, vision sharing, social contribution, leadership, etc., which have not been attempted so far in agricultural cases, are manifested and effective. The management and cultural aspects also went beyond the argument that only cultural aspects are important in overseas business, and also confirmed individual failure cases and their responses in recruitment, job, wage, retirement, development, organizational structure management, etc. As a result, there is significance and implications of this study in that it provides theoretical confirmation as well as practical and responsive basis for 'entrepreneurship', 'farming management', and 'management' aspects in overseas agricultural startup business operation.

  • PDF

A study on the improvement of distribution system by overseas agricultural investment (해외농업투자에 따른 유통체계 개선방안에 관한 연구)

  • Sun, Il-Suck;Lee, Dong-Ok
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Recently concerns have been raised due to the unbalanced supply of crops: the price of crops has been unstable and at one point the price went up so high that the word Agflation(agriculture+ inflation) was coined. Korea, in particular, is a small-sized country and needs to secure the stable supply of crops by investing in the produce importation at a national level. Investment in foreign produce importation is becoming more important as a measure for sufficient supply of crops, limited supply of domestic crops, weakened farming conditions worldwide, as well as recent changes in the use of crops due to the development of bio-fuels, influence of carbon emission on crops, the price increase in crops, and influx of foreign hot money. However, there are many problems with investing in foreign produce importation: lack of support from the government; lack of farming information and technology; difficulty in securing the capital; no immediate pay-off from the investment and insufficient management. Although foreign produce is originally more price-competitive than domestic produce, it loses its competiveness in the process of importation (due to high tariffs) and poor distribution system, which makes it difficult to sell in Korea. Therefore, investment in foreign produce importation is being questioned for feasibility; to make it possible, foreign produce must maintain the price-competitiveness. Especially, harvest of agricultural products depends on natural and geographical conditions of each country and those products have indigenous properties, so distribution system according to import and export of agricultural products should be treated more carefully than that of other industries. Distribution costs are differentiated into each item and include cost of sorting and wrapping, cost of wrapping materials, cost of domestic transport, cost of international transport and cost of clearing customs for import and export. So transporting and storing agricultural products generates considerable costs compared with other products. Also, due to upgrade of dietary life, needs for stability, taste and visible quality toward food including agricultural products are being raised and wrong way of storage causes decomposition of food and loss of freshness, making the storage more difficult than that in room temperature, so storage and transport in distribution of agricultural products needs specialty. In addition, because lack of specialty in distribution and circulation such as storage and wrapping does not solve limit factors in distance, the distribution and circulation has been limited to a form of import and export within short-distant region. Therefore, need for distribution out-sourcing which can satisfy specialty in managing distribution and circulation and it is needed to establish more effective distribution system. However, existing distribution system of agricultural products is exposed to various problems including problems in distribution channel, making distribution and strategy for distribution and those problems are as follows. First, in case of investment in overseas agricultural industry, stable supply of the products is difficult because areas of production are dispersed widely and influenced by outer factors due to including overseas distribution channels. Also, at the aspect of quality, standardization of products is difficult, distribution system is quite complicated and unreasonable due to long distribution channels according to international trade and financial and institutional support is not enough. Especially, there are quite a lot of ineffective factors including multi level distribution process, dramatic gap between production cost and customer's cost, lack of physical distribution facilities and difficulties in storage and transport due to lack of wrapping containers. Besides, because import and export of agricultural products has been manages under the company's own distribution according to transaction contract between manufacturers and exporting company, efficiency is low due to excessive investment in fixed costs and lack of specialty in dealing with agricultural products causes fall of value of products, showing the limit to lose price-competitiveness. Especially, because lack of specialty in distribution and circulation such as storage and wrapping does not solve limit factors in distance, the distribution and circulation has been limited to a form of import and export within short-distant region. Therefore, need for distribution out-sourcing which can satisfy specialty in managing distribution and circulation and it is needed to establish more effective distribution system. Second, among tangible and intangible services which promote the efficiency of the whole distribution, a function building distribution environment which includes distribution information, system for standard and inspection, distribution finance, system for diversification of risks, education and training, distribution administration and tax system is wanted. In general, such a function building distribution environment is difficult to be changed and supplement innovatively because its effect compared with investment does not appear immediately despite of its necessity. Especially, in case of distribution of agricultural products, as a function of collecting and distributing is performed individually through various channels, the importance of distribution information and standardization is getting more focus due to the problem of repetition of work and lack of specialty. Also, efficient management of distribution is quite difficult due to lack of professionals in distribution, so support to professional education is needed. Third, though effort to keep self-sufficiency ratio of staple food, rice is regarded as important at the government level, level of dependency on overseas of others crops is high. Therefore, plan for stable securing food resources aside from staple food is also necessary. Especially, governmental organizations of agricultural products distribution in Korea are production-centered and have unreasonable structure whose function at the aspect of distribution and consumption is quite insufficient. And development of new distribution channels which can deal with changes in distribution environment and they do not achieve actual results of strategy for distribution due to non-positive strategy for price distribution. That is, it implies the possibility that base for supply will become vulnerable because it does not mediate appropriate interests on total distribution channels such as manufacturers, wholesale dealers and vendors by emphasizing consumer protection excessively in the distribution of agricultural products. Therefore, this study examined fundamental concept and actual situation for our investment to overseas agriculture, drew necessities, considerations, problems, etc. of overseas agricultural investment and suggested improvements at the level of distribution for price competitiveness of agricultural products cultivated in overseas under five aspects; government's indirect support, distribution's modernization and distribution information function's strengthening, government's political support for distribution facility, transportation route, load and unloading works' improvement, price competitiveness' securing, professional manpower's cultivation by education and training, etc. Here are some suggestions for foreign produce importation. First, the government should conduct a survey on the current distribution channels and analyze the situation to establish a measure for long-term development plans. By providing each agricultural area with a guideline for planning appropriate production of crops, the government can help farmers be ready for importation, and prevent them from producing same crops all at the same time. Government can sign an MOU with the foreign government and promote the importation so that the development of agricultural resources can be stable and steady. Second, the government can establish a strategy for an effective distribution system by providing farmers and agriculture-related workers with the distribution information such as price, production, demand, market structure and location, feature of each crop, and etc. In order for such distribution system to become feasible, the government needs to reconstruct the current distribution system, designate a public organization for providing distribution information and set the criteria for level of produce quality, trade units, and package units. Third, the government should provide financial support and a policy to seek an efficient distribution channel for foreign produce to be delivered fresh: the government should expand distribution facilities (for selecting, packaging, storing, and processing) and transportation vehicles while modernizing old facilities. There should be another policy to improve the efficiency of unloading, and to lower the cost of distribution. Fourth, it is necessary to enact a new law covering exceptional cases for importing produce in order to maintain the price competitiveness; currently the high tariffs is keeping the imported produce from being distributed domestically. However, the new adjustment should be made carefully within the WTO regulations since it can create a problem from giving preferential tariffs. The government can also simplify the distribution channels in order to reduce the cost in the distribution process. Fifth, the government should educate distributors to raise the efficiency and to modernize the distribution system. It is necessary to develop human resources by educating people regarding the foreign agricultural environment, the produce quality, management skills, and by introducing some successful cases in advanced countries.

  • PDF

A Conceptual Review of the Transaction Costs within a Distribution Channel (유통경로내의 거래비용에 대한 개념적 고찰)

  • Kwon, Young-Sik;Mun, Jang-Sil
    • Journal of Distribution Science
    • /
    • v.10 no.2
    • /
    • pp.29-41
    • /
    • 2012
  • This paper undertakes a conceptual review of transaction cost to broaden the understanding of the transaction cost analysis (TCA) approach. More than 40 years have passed since Coase's fundamental insight that transaction, coordination, and contracting costs must be considered explicitly in explaining the extent of vertical integration. Coase (1937) forced economists to identify previously neglected constraints on the trading process to foster efficient intrafirm, rather than interfirm, transactions. The transaction cost approach to economic organization study regards transactions as the basic units of analysis and holds that understanding transaction cost economy is central to organizational study. The approach applies to determining efficient boundaries, as between firms and markets, and to internal transaction organization, including employment relations design. TCA, developed principally by Oliver Williamson (1975,1979,1981a) blends institutional economics, organizational theory, and contract law. Further progress in transaction costs research awaits the identification of critical dimensions in which transaction costs differ and an examination of the economizing properties of alternative institutional modes for organizing transactions. The crucial investment distinction is: To what degree are transaction-specific (non-marketable) expenses incurred? Unspecialized items pose few hazards, since buyers can turn toalternative sources, and suppliers can sell output intended for one order to other buyers. Non-marketability problems arise when specific parties' identities have important cost-bearing consequences. Transactions of this kind are labeled idiosyncratic. The summarized results of the review are as follows. First, firms' distribution decisions often prompt examination of the make-or-buy question: Should a marketing activity be performed within the organization by company employees or contracted to an external agent? Second, manufacturers introducing an industrial product to a foreign market face a difficult decision. Should the product be marketed primarily by captive agents (the company sales force and distribution division) or independent intermediaries (outside sales agents and distribution)? Third, the authors develop a theoretical extension to the basic transaction cost model by combining insights from various theories with the TCA approach. Fourth, other such extensions are likely required for the general model to be applied to different channel situations. It is naive to assume the basic model appliesacross markedly different channel contexts without modifications and extensions. Although this study contributes to scholastic research, it is limited by several factors. First, the theoretical perspective of TCA has attracted considerable recent interest in the area of marketing channels. The analysis aims to match the properties of efficient governance structures with the attributes of the transaction. Second, empirical evidence about TCA's basic propositions is sketchy. Apart from Anderson's (1985) study of the vertical integration of the selling function and John's (1984) study of opportunism by franchised dealers, virtually no marketing studies involving the constructs implicated in the analysis have been reported. We hope, therefore, that further research will clarify distinctions between the different aspects of specific assets. Another important line of future research is the integration of efficiency-oriented TCA with organizational approaches that emphasize specific assets' conceptual definition and industry structure. Finally, research of transaction costs, uncertainty, opportunism, and switching costs is critical to future study.

  • PDF

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.

Smart Store in Smart City: The Development of Smart Trade Area Analysis System Based on Consumer Sentiments (Smart Store in Smart City: 소비자 감성기반 상권분석 시스템 개발)

  • Yoo, In-Jin;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.25-52
    • /
    • 2018
  • This study performs social network analysis based on consumer sentiment related to a location in Seoul using data reflecting consumers' web search activities and emotional evaluations associated with commerce. The study focuses on large commercial districts in Seoul. In addition, to consider their various aspects, social network indexes were combined with the trading area's public data to verify factors affecting the area's sales. According to R square's change, We can see that the model has a little high R square value even though it includes only the district's public data represented by static data. However, the present study confirmed that the R square of the model combined with the network index derived from the social network analysis was even improved much more. A regression analysis of the trading area's public data showed that the five factors of 'number of market district,' 'residential area per person,' 'satisfaction of residential environment,' 'rate of change of trade,' and 'survival rate over 3 years' among twenty two variables. The study confirmed a significant influence on the sales of the trading area. According to the results, 'residential area per person' has the highest standardized beta value. Therefore, 'residential area per person' has the strongest influence on commercial sales. In addition, 'residential area per person,' 'number of market district,' and 'survival rate over 3 years' were found to have positive effects on the sales of all trading area. Thus, as the number of market districts in the trading area increases, residential area per person increases, and as the survival rate over 3 years of each store in the trading area increases, sales increase. On the other hand, 'satisfaction of residential environment' and 'rate of change of trade' were found to have a negative effect on sales. In the case of 'satisfaction of residential environment,' sales increase when the satisfaction level is low. Therefore, as consumer dissatisfaction with the residential environment increases, sales increase. The 'rate of change of trade' shows that sales increase with the decreasing acceleration of transaction frequency. According to the social network analysis, of the 25 regional trading areas in Seoul, Yangcheon-gu has the highest degree of connection. In other words, it has common sentiments with many other trading areas. On the other hand, Nowon-gu and Jungrang-gu have the lowest degree of connection. In other words, they have relatively distinct sentiments from other trading areas. The social network indexes used in the combination model are 'density of ego network,' 'degree centrality,' 'closeness centrality,' 'betweenness centrality,' and 'eigenvector centrality.' The combined model analysis confirmed that the degree centrality and eigenvector centrality of the social network index have a significant influence on sales and the highest influence in the model. 'Degree centrality' has a negative effect on the sales of the districts. This implies that sales decrease when holding various sentiments of other trading area, which conflicts with general social myths. However, this result can be interpreted to mean that if a trading area has low 'degree centrality,' it delivers unique and special sentiments to consumers. The findings of this study can also be interpreted to mean that sales can be increased if the trading area increases consumer recognition by forming a unique sentiment and city atmosphere that distinguish it from other trading areas. On the other hand, 'eigenvector centrality' has the greatest effect on sales in the combined model. In addition, the results confirmed a positive effect on sales. This finding shows that sales increase when a trading area is connected to others with stronger centrality than when it has common sentiments with others. This study can be used as an empirical basis for establishing and implementing a city and trading area strategy plan considering consumers' desired sentiments. In addition, we expect to provide entrepreneurs and potential entrepreneurs entering the trading area with sentiments possessed by those in the trading area and directions into the trading area considering the district-sentiment structure.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis (키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향)

  • Kho, Jaechang;Cho, Kuentae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.101-123
    • /
    • 2013
  • Recently due to the advancements of science and information technology, the socio-economic business areas are changing from the industrial economy to a knowledge economy. Furthermore, companies need to do creation of new value through continuous innovation, development of core competencies and technologies, and technological convergence. Therefore, the identification of major trends in technology research and the interdisciplinary knowledge-based prediction of integrated technologies and promising techniques are required for firms to gain and sustain competitive advantage and future growth engines. The aim of this paper is to understand the recent research trend in management of technology (MOT) and to foresee promising technologies with deep knowledge for both technology and business. Furthermore, this study intends to give a clear way to find new technical value for constant innovation and to capture core technology and technology convergence. Bibliometrics is a metrical analysis to understand literature's characteristics. Traditional bibliometrics has its limitation not to understand relationship between trend in technology management and technology itself, since it focuses on quantitative indices such as quotation frequency. To overcome this issue, the network focused bibliometrics has been used instead of traditional one. The network focused bibliometrics mainly uses "Co-citation" and "Co-word" analysis. In this study, a keywords network analysis, one of social network analysis, is performed to analyze recent research trend in MOT. For the analysis, we collected keywords from research papers published in international journals related MOT between 2002 and 2011, constructed a keyword network, and then conducted the keywords network analysis. Over the past 40 years, the studies in social network have attempted to understand the social interactions through the network structure represented by connection patterns. In other words, social network analysis has been used to explain the structures and behaviors of various social formations such as teams, organizations, and industries. In general, the social network analysis uses data as a form of matrix. In our context, the matrix depicts the relations between rows as papers and columns as keywords, where the relations are represented as binary. Even though there are no direct relations between papers who have been published, the relations between papers can be derived artificially as in the paper-keyword matrix, in which each cell has 1 for including or 0 for not including. For example, a keywords network can be configured in a way to connect the papers which have included one or more same keywords. After constructing a keywords network, we analyzed frequency of keywords, structural characteristics of keywords network, preferential attachment and growth of new keywords, component, and centrality. The results of this study are as follows. First, a paper has 4.574 keywords on the average. 90% of keywords were used three or less times for past 10 years and about 75% of keywords appeared only one time. Second, the keyword network in MOT is a small world network and a scale free network in which a small number of keywords have a tendency to become a monopoly. Third, the gap between the rich (with more edges) and the poor (with fewer edges) in the network is getting bigger as time goes on. Fourth, most of newly entering keywords become poor nodes within about 2~3 years. Finally, keywords with high degree centrality, betweenness centrality, and closeness centrality are "Innovation," "R&D," "Patent," "Forecast," "Technology transfer," "Technology," and "SME". The results of analysis will help researchers identify major trends in MOT research and then seek a new research topic. We hope that the result of the analysis will help researchers of MOT identify major trends in technology research, and utilize as useful reference information when they seek consilience with other fields of study and select a new research topic.

A Hybrid SVM Classifier for Imbalanced Data Sets (불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델)

  • Lee, Jae Sik;Kwon, Jong Gu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.125-140
    • /
    • 2013
  • We call a data set in which the number of records belonging to a certain class far outnumbers the number of records belonging to the other class, 'imbalanced data set'. Most of the classification techniques perform poorly on imbalanced data sets. When we evaluate the performance of a certain classification technique, we need to measure not only 'accuracy' but also 'sensitivity' and 'specificity'. In a customer churn prediction problem, 'retention' records account for the majority class, and 'churn' records account for the minority class. Sensitivity measures the proportion of actual retentions which are correctly identified as such. Specificity measures the proportion of churns which are correctly identified as such. The poor performance of the classification techniques on imbalanced data sets is due to the low value of specificity. Many previous researches on imbalanced data sets employed 'oversampling' technique where members of the minority class are sampled more than those of the majority class in order to make a relatively balanced data set. When a classification model is constructed using this oversampled balanced data set, specificity can be improved but sensitivity will be decreased. In this research, we developed a hybrid model of support vector machine (SVM), artificial neural network (ANN) and decision tree, that improves specificity while maintaining sensitivity. We named this hybrid model 'hybrid SVM model.' The process of construction and prediction of our hybrid SVM model is as follows. By oversampling from the original imbalanced data set, a balanced data set is prepared. SVM_I model and ANN_I model are constructed using the imbalanced data set, and SVM_B model is constructed using the balanced data set. SVM_I model is superior in sensitivity and SVM_B model is superior in specificity. For a record on which both SVM_I model and SVM_B model make the same prediction, that prediction becomes the final solution. If they make different prediction, the final solution is determined by the discrimination rules obtained by ANN and decision tree. For a record on which SVM_I model and SVM_B model make different predictions, a decision tree model is constructed using ANN_I output value as input and actual retention or churn as target. We obtained the following two discrimination rules: 'IF ANN_I output value <0.285, THEN Final Solution = Retention' and 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn.' The threshold 0.285 is the value optimized for the data used in this research. The result we present in this research is the structure or framework of our hybrid SVM model, not a specific threshold value such as 0.285. Therefore, the threshold value in the above discrimination rules can be changed to any value depending on the data. In order to evaluate the performance of our hybrid SVM model, we used the 'churn data set' in UCI Machine Learning Repository, that consists of 85% retention customers and 15% churn customers. Accuracy of the hybrid SVM model is 91.08% that is better than that of SVM_I model or SVM_B model. The points worth noticing here are its sensitivity, 95.02%, and specificity, 69.24%. The sensitivity of SVM_I model is 94.65%, and the specificity of SVM_B model is 67.00%. Therefore the hybrid SVM model developed in this research improves the specificity of SVM_B model while maintaining the sensitivity of SVM_I model.