• Title/Summary/Keyword: Structural-acoustic coupling

Search Result 50, Processing Time 0.032 seconds

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

A Study on the Acoustical and Vibrational Characteristics of a Passenger Car ( II );A Fundamental Study on the Coupling Analysis of Vibration and Acoustics of Vechicle Compartment Model (승용차의 차실음향 및 차체진동에 관한 연구(II))

  • 김석현;이장무;김중희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.824-833
    • /
    • 1991
  • 본 연구에서는 차체구조계의 진동모드 변수와 차실음향계의 음향모드변수들이 어떻게 관련되어 차실소음을 결정하는 가를 밝혔다. 그 결과, 수치해석 결과의 효용 성을 높이고 실내소음 평가방법을 체계화 시킬 수 있었으며, 효과적인 소음저감을 위 한 유용한 자료를 얻을 수가 있었다. 한편, 이제까지의 차실소음의 응답해석에서 가 장 큰 오차의 발생요인은 차체의 구조진동 모드데이타인데, 본 연구에서는 유한요소해 석 대신 모드시험 결과를 이용함으써, 유한요소 모델리이 어려운 경우의 소음 해석의 신뢰도를 높일수가 있었다.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

The Natural Cooling Effects of Pre-heated Substrate during RF Magnetron Sputter Deposition of ZnO (ZnO 박막의 RF 마그네트론 스퍼터 증착 중 미리 가열된 기판의 자연냉각 효과)

  • Park, Sung-Hyun;Lee, Neung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.905-909
    • /
    • 2007
  • Crystalline and micro-structural characteristics of ZnO thin films which were deposited on p-Si(100) with cooling naturally down of pre-heated substrate during RF magnetron sputter deposition, were investigated by XRD and SEM in this paper. The film which was prepared on the substrate which was pre-heated to $400^{\circ}C$ before deposition and then cooled naturally down during deposition, showed the most outstanding c-axis preferred orientation. The ZnO thin film having the best crystalline result were applied to SMR type FBAR device and resonance properties of the device were investigated by network analyzer. It showed that resonance frequency was 2.05 GHz, return loss was -30.64 dB, quality factor was 3169 and electromechanical coupling factor was 0.4 %. This deposition method would be very useful for application of surface acoustic wave filter or film bulk acoustic wave resonator.

The Effect of Structural Models(Membrane or Plate) on the Modal Model Method (구조물의 모델링(박막 혹은 평판)이 모드 모델 방법에 미치는 영향)

  • Kim, Sea-Moon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.714-719
    • /
    • 2000
  • The analysis of structures may be classified into three categories: theoretical, numerical, and experimental approaches. The numerical and experimental methods are very useful when the structures to be analyzed have complicated shapes or geometry because theoretical methods are restricted to simple and special cases. However, the theoretical methods are very important analysis in the viewpoint that they can give basic insight for the structural behavior. Among them the modal model method is widely used because of the powerful propertiy of eigenfunctions(mode shapes), or orthogonality. In this paper, the modal model method was reviewed and studied for various models for structures: string, beam, membrane, and plate. Governing equations and solution methods were compared and a structural-acoustic coupling system was used for an application.

  • PDF

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.

A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement (PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구)

  • Choi, Inchan;Lee, Keeman;Juddoo, Mrinal;Masri, A.R.
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor (연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

Structural-Acoustic Coupling Analysis and Structural Modification for the Reduction of Booming Noise (BOOMING 소음 저감을 위한 구조-음향의 연성해석과 차체구조 변경)

  • 성명호;임차섭;정기섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.282-287
    • /
    • 1994
  • 본 연구에서는 연구대상 차량의 소음저감 방안을 마련하기 위하여 차체의 진동 및 차실의 음향 특성해석, 연성해석을 수행하였다. 차실 음향특성을 나타내는 음향모드는 유한요소 해석으로부터 결정하였다. 이때 해석결과를 확인하기 위하여 음향모드를 측정, 수치해석결과와 비교하였다. 차실소음의 가진 특성을 갖는 차체의 진동특성은 모드시험을 통해서 결정하였다. 결정된 이들 모드들의 연성해석은 연성해석 전용 컴퓨터 프로그램을 사용하여 수행하였고, 그 결과를 소음실험 결과와 비교하여 Booming 소음에 기여가 큰 차체 panel부위를 결정하였다. 기여가 큰 panel의 진동특성 변경시 소음효과를 측정하여 구조변경 방안을 검토하였다.

  • PDF

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.