• Title/Summary/Keyword: Structural transformation

Search Result 555, Processing Time 0.029 seconds

Techniques to Transform Object-oriented Design into Component-based Design Formal Specifications using Formal Specifications (객체지향 설계에서 정형명세를 이용한 컴포넌트 설계로의 변환 기법)

  • 신숙경;이종국;김수동
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.883-900
    • /
    • 2004
  • As object-oriented development technology that increases extensibility and reusability has been widely spread, it can shorten development period and enhance quality by reusing verified object-oriented artifacts. Thus we can construct high quality component-based system at short time transforming component-based model using verified object-oriented artifacts. In this paper, we propose techniques to transform available object-oriented design model into component-based model using formal specification techniques in order to increase accuracy of transformation. First, formal specification language for component is defined for formal specification of component-based design. And, techniques for formal specification of object-oriented design using Object-Z, a formal specification language, is proposed in structural, functional, and dynamic aspects. Next, we present techniques for transforming formal specification of object-oriented design into formal specification of component-based design. Through a case study we apply the proposed transformation techniques and show the transformation process of object-oriented formal specification into component-based formal specification.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Porous Structures with Negative Poisson's Ratio using Pattern Transformation Triggered by Deformation (변형에 의한 패턴변화를 활용한 음의 포아송비 다공성 구조)

  • Oh, Myung-Hoon;Choi, Myung-Jin;Byun, Tauk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.275-282
    • /
    • 2017
  • In this paper, using a pattern transformation triggered by deformation, we propose a porous structure that exhibits the characteristic of negative Poisson's ratio in both tension and compression. Due to the lack of torque for rotational motion of ligaments, the existing porous structure of circular holes shows positive Poisson's ratio under tension loading. Also, the porous structure of elliptic holes has a drawback of low durability due to stress concentration. Thus, we design curved ligaments to increase the rotational torque under tension and to alleviate the stress concentration such that strain energy is uniformly distributed in the whole structure. The developed structure possesses better stiffness and durability than the existing structures. It also exhibits the negative Poisson ratio in both compression and tension of 10% nominal strain. Through nonlinear finite element analysis, the performance of developed structure is compared with the existing structure of elliptic holes. The developed structure turns out to be significantly improved in terms of stiffness and durability.

Mathematical Proof for Structural Optimization with Equivalent Static Loads Transformed from Dynamic Loads (동하중에서 변환된 등가정하중에 의한 최적화 방법의 수학적 고찰)

  • Park, Gyung-Jin;Kang, Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.268-275
    • /
    • 2003
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. The dynamic loads are often transformed into static loads by dynamic factors, design codes, and etc. Therefore, the optimization results can give inaccurate solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple leading conditions which are not costly to include in modern structural optimization. In this research, it is mathematically proved that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition. At first, the solution of the new algorithm is mathematically obtained. Using the termination criteria, it is proved that the solution satisfies the Karush-Kuhn-Tucker necessary condition of the original dynamic response optimization problem. The application of the algorithm is discussed.

Decoupling and Sources of Structural Transformation of East Asian Economies: An International Input-Output Decomposition Analysis

  • Ko, Jong-Hwan;Pascha, Werner
    • East Asian Economic Review
    • /
    • v.18 no.1
    • /
    • pp.55-81
    • /
    • 2014
  • This study aims to answer two questions using input-output decomposition analysis: 1) Have emerging Asian economies decoupled? 2) What are the sources of structural changes in gross outputs and value-added of emerging Asian economies related to the first question? The main findings of the study are as follows: First, since 1990, there has been a trend of increasing dependence on exports to extra-regions such as G3 and the ROW, indicating no sign of "decoupling", but rather an increasing integration of emerging Asian countries into global trade. Second, there is a contrasting feature in the sources of structural changes between non-China emerging Asia and China. Dependence of non-China emerging Asia on intra-regional trade has increased in line with strengthening economic integration in East Asia, whereas China has disintegrated from the region. Therefore, it can be said that China has contributed to no sign of decoupling of emerging Asia as a whole.

A Study on the Development of a Seismic Response Monitoring System for Cable Bridges by Using Accelerometers (가속도계를 이용한 사장교의 지진거동 계측시스템 개발에 대한 연구)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.283-292
    • /
    • 2021
  • In this study, a structural health monitoring system for cable-stayed bridges is developed. In the system, condition assessment of the structure is performed based on measured records from seismic accelerometers. Response indices are defined to monitor structural safety and serviceability and derived from the measured acceleration data. The derivation process of the indices is structured to follow the transformation from the raw data to the outcome. The process includes noise filtering, baseline correction, numerical integration, and calculation of relative differences. The system is packed as a condition assessment program, which consists of four major processes of the structural health evaluation: (i) format conversion of the raw data, (ii) noise filtering, (iii) generation of response indices, and (iv) condition evaluation. An example set of limit states is presented to evaluate the structural condition of the test-bed and cable-stayed bridge.

Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure (2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계)

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF

Generalized Weighted Linear Models Based on Distribution Functions

  • Yeo, In-Kwon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.161-166
    • /
    • 2003
  • In this paper, a new form of generalized linear models is proposed. The proposed models consist of a distribution function of the mean response and a weighted linear combination of distribution functions of covariates. This form addresses a structural problem of the link function in the generalized linear models. Markov chain Monte Carlo methods are used to estimate the parameters within a Bayesian framework.

  • PDF