• 제목/요약/키워드: Structural strength assessment

검색결과 359건 처리시간 0.029초

Damage assessment for buried structures against internal blast load

  • Ma, G.W.;Huang, X.;Li, J.C.
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.301-320
    • /
    • 2009
  • Damage assessment for buried structures against an internal blast is conducted by considering the soil-structure interaction. The structural element under analysis is assumed to be rigid-plastic and simply-supported at both ends. Shear failure, bending failure and combined failure modes are included based on five possible transverse velocity profiles. The maximum deflections with respect to shear and bending failure are derived respectively by employing proper failure criteria of the structural element. Pressure-Impulse diagrams to assess damage of the buried structures are subsequently developed. Comparisons have been done to evaluate the influences of the soil-structure interaction and the shear-to-bending strength ratio of the structural element. A case study for a buried reinforced concrete structure has been conducted to show the applicability of the proposed damage assessment method.

해양구조물 설계코드에 기반한 좌굴강도 평가 시스템 개발 (Development of the Buckling Strength Assessment System based on Offshore Structure Design Code)

  • 김을년
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.38-45
    • /
    • 2017
  • FPSO is widely used to develop deep sea oil fields and HHI has constructed ten(10) FPSOs. During these constructions, relevant structural design criteria such as yielding, buckling, fatigue, collision and impact strength were applied to verify structural safety. To apply the buckling strength evaluation for structures, the critical buckling stresses and applied stresses of relevant panels should be calculated. The plate and stiffened panels are to be idealized, which are needed much time and efforts by designers. Therefore, program development is necessary in order to evaluate the buckling strength conveniently and accurately. In this study, the buckling strength assessment system by using offshore code, DNV-RP-C201 was developed under MSC/PATRAN, pre-post program of finite element method. Graphic user interface program is written in MSC/PATRAN PCL functions. Source program to evaluate the buckling strength is developed in FORTRAN programming languages. The developed program is verified by comparing with the results of the Nauticus Hull developed by DNV Classification Society, and applied to the marine construction project conducted by Hyundai Heavy Industries LTD.

  • PDF

8m급 고속 활주선형 레저보트의 구조강도 평가 (Strength Assessment of 8m-class High-Speed Planing Leisure Boat)

  • 고대은
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.418-423
    • /
    • 2018
  • 최근 국내에서는 해양레저 산업의 활성화와 세계 해양레저 시장 진출을 위해 고부가가치 레저선박에 대한 연구개발이 활발히 진행되고 있다. 레저선박의 소재로는 물성이 우수하고 경량선체의 제작이 가능한 FRP(Fiber Reinforced Plastic) 복합재료가 널리 사용되고 있으며, FRP 복합재료로 제작되는 레저선박의 구조안전성 확보를 위한 설계기술 개발이 중요한 연구개발 목표중의 하나가 되고 있다. 본 연구에서는 RTM(Resin Transfer Molding) 공법으로 제작되는 FRP 복합재료 소재의 샌드위치 판넬을 주 구조부재로 하는 8m급 고속 활주선형 레저보트의 설계안에 대하여 구조강도를 평가하였다. 한국선급의 고속 경구조선 규칙 및 적용지침에 의거하여 선체 구조 안전성 검증을 위한 선저 슬래밍 충격하중 분포를 구하고, 샌드위치 구조의 복합재료 판을 등가의 굽힘 강성을 갖는 단일 재료의 등방성 판으로 치환하여 구조 해석을 수행하였다. 해석 결과를 실 제작 부재 시험편에 대한 강도 시험 결과와 비교한 결과 모든 내부 구조부재가 요구 강도를 충분히 만족함을 확인하였다.

탄소섬유강화플라스틱 재료 레저선박의 구조강도 평가를 위한 시험설비 구축과 운용에 관한 연구 (The Development of Structural Test Facility for the Strength Assessment of CFRP Marine Leisure Boat)

  • 정한구;장양;염덕준
    • 대한조선학회논문집
    • /
    • 제54권4호
    • /
    • pp.312-320
    • /
    • 2017
  • This paper deals with the development of structural test facility for the strength assessment of marine leisure boat built from carbon fiber reinforced plastics (CFRP) materials. The structural test facility consists of test jig, load application and control system, and data acquisition system. Test jig, and load application and control system are designed to accommodate various size and short span to depth ratios of single skin, top-hat stiffened and sandwich constructions in plated structural format such as square and rectangular shapes. A lateral pressure load, typical and important applied load condition to the plates of the hull structure for marine leisure boat, is simulated by employing a number of hydraulic cylinders operated automatically and manually. To examine and operate the structural test facility, five carbon/epoxy based FRP square plates having the test section area of $1m^2$, which are part of CFRP marine leisure boat hull, are prepared and they are subjected to monotonically increasing lateral pressure loads. In the test preparation, considering the symmetry of the plates geometry, various strain gauges and linear variable displacement transformer are used in conjunction with data acquisition system utilizing LabVIEW. From the test observation, the responses of the CFRP hull structure of marine leisure boat are understood by obtaining load to deflection and strain to load curves.

손상선박의 안전성 평가를 위한 통합시스템 개발 (Development of Integrated System for Safety Assessment of Damaged Ship)

  • 이순섭;이동곤
    • 한국CDE학회논문집
    • /
    • 제13권3호
    • /
    • pp.227-234
    • /
    • 2008
  • The number of marine accidents have been decreased since various equipments for navigation control have been introduced to the marine vessels. However, disastrous marine accidents such as ship collisions are occurred more frequently. Therefore, IMO(International Maritime Organization) is enforcing the design requirement of structural strength for marine vessel. Also EU countries are developing new design methodologies and design tools to suggest the design guidance which can minimize the damage of commercial vessels in case of marine collision accidents. In this study, an integrated design system for the safety assessment has been presented to enhance the safety of damaged ships in marine collision accidents. The architecture of system is described by use-cases and IDEF functional analysis. Then an integrated system for safety assessment of damaged ship which is considering both damage stability and structural safety has been developed to support the ship design in early stage.

최대 화물 적재하중을 받는 자동차운반선의 직접강도평가 (Direct Strength Assessment of Pure Car and Truck Carrier under Maximum Cargo Loads)

  • 김태엽;윤성원;조제형;정승호;김명현
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.641-647
    • /
    • 2019
  • Yearly world vehicle production has continued to increase, and the global seaborne trade volumes also are recovering. Based on these positive trends, as demand for cargo ships increases in the freight transportation market, Pure car and truck carriers (PCTCs) with large gaps between decks continue to be ordered. The structural analysis of the cargo hold was performed in order to confirm its structural safety in accordance with the guidance for the direct strength assessment of the Korean Register (KR) of Shipping. And, according to the type of cargo, the maximum deflection and structurally weak area that occurred in deck 5 was confirmed. Also, it was found that the weight of the cargo had a significant effect on the deck, the primary members of the deck's structure, and pillars. The results of the structural analysis conducted in this study were added to the existing cargo load planning software. This was done so that the prediction of the maximum stress and the deflection of the deck based on the information about the cargo could be confirmed quickly. In addition, the data will be used as the basic data for rapid information management response to changes in cargo items.

차량 통행하중에 대한 사장교의 신뢰성에 기초한 안전도 및 내하력평가 (Reliability Based Assessment of Safety and Load Carrying Capacity of Cable-Stayed Bridge under Vehicle Traffic Loads)

  • 조효남;이승재;임종권
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.199-208
    • /
    • 1994
  • One of the main objectives of the study is to propose a practical but realistic limit state model considering combined effect of axial and bending load for reliability analysis and safety assessment of cable-stayed bridge under vehicle traffic loads. This paper is intended to propose a new approach for the evaluation of reserved load carrying capacity of cable-stayed bridge under vehicle traffic loads in terms of equivalent strength, which may be defined as a bridge strength corresponding to the reliability index of the bridge. This can be derived from an inverse process based on the concept of FOSM form of reliability index. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed reliability model and methods are applied to the safety assessment of Jindo Bridge which is one of major two cable-stayed bridges in Korea.

  • PDF

손상선박의 안전성평가를 위한 3차원 형상 모델러에 관한 연구 (A Study on the 3-D Geometric Modeler for Safety Assessment of Damaged Ships)

  • 이동곤;이순섭;박범진
    • 대한조선학회논문집
    • /
    • 제40권6호
    • /
    • pp.30-36
    • /
    • 2003
  • To improve survivability of damaged ship, assessment of stability and structural safety, and behavior analysis in wave is required. Prediction of sinking time, damage stability and structural strength considering progressive flooding and dynamic force in wave is very important. To do it, a geometric model which can be express damaged ship is prepared. This paper described the geometric modeler for survivability assessment of damaged ship. The modeler is developed based on 3-D geometric modeling kernel, ACIS. The hull form and compartment definition is available fundamentally. And requirement for modeler contains data generation and interface for hydrostatic calculation, behavior analysis, and longitudinal strength analysis and so on. To easy access modeling system by conventional user such as crew, user interface is developing.

Effect of cover cracking on reliability of corroded reinforced concrete structures

  • Chen, Hua-Peng;Nepal, Jaya
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.511-519
    • /
    • 2017
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.

필릿 용접구조물의 피로해석을 위한 기준응력에 대한 비교 연구 -구조응력 및 핫스팟응력- (A Comparative Study for the Fatigue Assessment of fillet Weldments Using Structural Stress and Hot Spot Stress)

  • 하청인;강성원;김만수;손상용;허주호;김명현
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.476-483
    • /
    • 2006
  • Fatigue strength assessments with two types of load carrying fillet weldment under out-of-plane bending load have been carried out by using both hot spot stress and structural stress methods. In this study, a derivation for the structural stress method using shell element models is discussed in detail. Finite element analysis using shell element models have been performed for the assessment of fatigue strength. As a result of the fatigue strength evaluation for load carrying transverse fillet weldment, hot spot stress method is found to be consistent with structural stress method and measurement. Hot spot stress, however, estimated for the load carrying longitudinal fillet weldment exhibit large variation with respect to mesh size and element type while the calculated structural stress for the longitudinal fillet weldment is relatively independent of mesh size. On the other hand, drawbacks and doubts associated with applying the structural stress method such as the guidance of virtual node method have been discussed.