• Title/Summary/Keyword: Structural strain

Search Result 2,540, Processing Time 0.033 seconds

Structural Health Monitoring of Nuclear Containment Building Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 원자력발전소 격납건물의 구조 건전성 계측)

  • Lee, Seung-Hwan;Lee, Nam-Kwon;Lee, Geum-Seok;Lee, Hong-Pyo;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.71-75
    • /
    • 2013
  • Nuclear containment building is used as second blockage to protect us from a radiation leakage caused by the natural disaster or any accidents, so it's safety is important and must be kept with continuous surveillance. In this study, we measured the strain of a nuclear containment building's wall by using FBG sensor and investigated the structural safety of a nuclear containment building. 50 FBG strain sensors and 18 FBG strain sensors were attached on the side wall and upper dome of a nuclear containment building, respectively. We measured the strains of the outside concrete wall during the Structural Integrity Test (SIT) of a nuclear containment building. The strain of an upper dome was larger than that of a side wall, about $200{\mu}{\varepsilon}$. And the very small strain was measured at vertical direction of a side wall. These experimental results were used to evaluate the structural health of nuclear containment building.

Measurement of Structural Stress Concentration by PVDF Film Sensors (압전필름센서에 의한 구조물의 응력집중의 측정)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Choi, Man-Yong;Lim, Jong-Mook;Kim, In-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.109-119
    • /
    • 2000
  • PVDF film sensor was applied to measure the stress concentration for monitoring the structural integrity. The strain calibration of this film sensor was performed by the bending test of aluminum beam. The PVDF sensor and the electrical strain gage were bonded on the beam. When the beam was loaded, the output of electrical strain gage was compared with the output of the PVDF sensor. The waveform of PVDF sensor output was shown as the same form of the output of electrical strain gage. The gain was determined as 1.7 by comparing these two signals to determine the exact value of the strain. In order to experiment the stress concentration, the stress field was analyzed by finite element analysis. The tensile test of notched steel specimens was conducted to develop the measurement technique of stress concentration. The output voltage ratio between the PVDF sensor near the notch and the PVDF sensor far from the notch could give the information about the load bearing capacity of steel specimen.

  • PDF

Effects of size-dependence on static and free vibration of FGP nanobeams using finite element method based on nonlocal strain gradient theory

  • Pham, Quoc-Hoa;Nguyen, Phu-Cuong
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.331-348
    • /
    • 2022
  • The main goal of this article is to develop the finite element formulation based on the nonlocal strain gradient and the refined higher-order deformation theory employing a new function f(z) to investigate the static bending and free vibration of functionally graded porous (FGP) nanobeams. The proposed model considers the simultaneous effects of two parameters: nonlocal and strain gradient coefficients. The nanobeam is made by FGP material that exists in un-even and logarithmic-uneven distribution. The governing equation of the nanobeam is established based on Hamilton's principle. The authors use a 2-node beam element, each node with 8 degrees of freedom (DOFs) approximated by the C1 and C2 continuous Hermit functions to obtain the elemental stiffness matrix and mass matrix. The accuracy of the proposed model is tested by comparison with the results of reputable published works. From here, the influences of the parameters: nonlocal elasticity, strain gradient, porosity, and boundary conditions are studied.

An improved modal strain energy method for structural damage detection, 2D simulation

  • Moradipour, Parviz;Chan, Tommy H.T.;Gallag, Chaminda
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.105-119
    • /
    • 2015
  • Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • This paper prescribed the structural integrity of the API 5L X65 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5L X65 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5L X65 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.

Modal Strain Energy-based Damage Detection in Beam Structures using Three Different Sensor Types (보구조물의 모드변형에너지기반 손상 검색: 3가지 타입 센서의 비교)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.680-683
    • /
    • 2011
  • This study deals with damage detection in beam structure by using modal strain energy-based technique with three different sensor types: accelerometer, lead zirconate titanate (PZT) piezoelectric sensor and electrical strain gage. First, the use of direct piezoelectric effect of PZT sensor for dynamic strain response are presented. Next, a modal strain energy-based damage detection method is outlined. For validation, forced vibration tests are carried out on lab-scale aluminum cantilever beam. The dynamic responses are measured for several damage scenarios. Based on damage localization results, the performance of three different sensor types is evaluated.

  • PDF

An experimental study on the effect of flexural strengthening with steel plate considering initial strain in reinforcement concrete beams (초기변형률을 고려한 철근콘크리트의 보의 강판휨보강 효과에 관한 실험적 연구)

  • Kim, Jong-Ok;Kim, Jin-Mu;Jang, Hwa-Kyun;Won, Young-Sul;Joo, Kyung-Jai
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.228-236
    • /
    • 2001
  • When RC beams are strengthened for flexure with steel plate, reinforced member has initial strain due to the dead load and is subject to partial damage. Strain of steel strengthening is zero at initial state. The effect of strengthening flexural member might be influenced by the quantity of initial strain. In this study, when He beams are strengthened for flexure with steel plate, its behavior is experimentally compared for the reinforcement efficiency of members due to the existence of different levels of initial strain. It is confirmed that reinforcement efficiency varies depending on the difference of initial strain.

  • PDF

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).