• Title/Summary/Keyword: Structural stability

Search Result 2,726, Processing Time 0.028 seconds

Development Process of Mechanical Structure for a Large Radar (대형 레이더 기계구조부 개발 절차)

  • Shin, Dongjun;Lee, Jonghak;Kang, Youngsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, design requirements of the large radar were investigated, and development was performed through the analysis and design. Large radar should be designed by bearing the 75 knot wind force and $20kg/m^2$ ice mass as operating conditions in order to meet structural stability, and driving torque and bearing load were calculated for securing the driving stability. Thermal dissipation analysis was performed considering TRM and DC-DC Converter's limitation temperature by $50^{\circ}C$ ambient temperature condition in order to attain thermal stability, and PSD and shock analysis were carried out by using MIL-STD-810G vibration and shock specification in order to transport and installation of the large radar. As a result, all components of large radar could secure the structural stability more than 2.8 factor of safety, and driving stability was also secured with adequate bearing fatigue life. Thermal stability was attained by allowable max temperature 88.7 C of the TRM, and structural stability for transportation and installation of the large radar was also secured more than 5 factor of safety. After it was transported and installed to the radar site, operating capability was finally verified by rotating the large radar.

Behaviour and stability of prestressed steel plate girder for torsional buckling

  • Gupta, L.M.;Ronghe, G.N.;Naghate, M.K.
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • A higher level of engineering standard in the field of construction, is the use of prestressing in building structures. The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel girders were reported in literatures, but much of the work was not studied with reference to the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccentrically, will behave as a beam-column, which is subjected to axial compression and bending moment which will cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necessary for stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of "Vlasov's Circle of Stability" under eccentric prestressing force.

Evaluation of the Structural Stability of Platform Screen Door(PSD) (승강장 스크린 도어(PSD)시스템의 구조 안정성 평가)

  • Lee, Jae-Youl;Ryu, Bong-Jo;Jeon, Jae-Sun;Kim, Dong-Hyun;Lee, Eun-Kyu;Shin, Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1190-1197
    • /
    • 2006
  • We have evaluated the structural stability of a platform screen door due to train wind pressure. The platform screen door was installed at the ground and underground station and had 65 meters in length. Also, the platform screen door was a safety device because it was placed between the train and the platform. The finite element analysis was used to calculate the stresses and deflections of platform screen door caused by wind pressure using ANSYS 10.0. Quasi-static analysis was introduced to save calculating time and check quickly structural performances when compared to those of transient analysis. The results show that structural stability of the platform screen door under train wind pressure is proven and quasi-static analysis can quickly check the structural integrity of platform screen door.

  • PDF

The stability of semi-rigid skeletal structures accounting for shear deformations

  • Gorgun, Halil
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1065-1084
    • /
    • 2016
  • The analysis and design of skeletal structures is greatly influenced by the behaviour of beam-to-column connections, where patented designs have led to a wide range of types with differing structural quantities. The behaviour of beam-to-column connections plays an important role in the analysis and design of framed structures. This paper presents an overview of the influence of connection behaviour on structural stability, in the in-plane (bending) mode of sway. A computer-based method is presented for geometrically nonlinear plane frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental modified stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix were found. The critical load has been searched as a suitable load parameter for the loss of stability of the system. Several examples are presented to demonstrate the validity of the analysis procedure. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks. Combined with a parametric column effective length study, connection and frame stiffness are used to propose a method for the analysis of semi-rigid frames where column effective lengths are greatly reduced and second order (deflection induced) bending moments in the column may be distributed via the connectors to the beams, leading to significant economies.

Effects of Expansion of Sleeper Span at the Deck End of a Long Continuous Bridge on Train Safety and Track Stability (장대교량 신축부에서 침목간격 확대가 차량의 주행안전성 및 궤도의 구조안정성에 미치는 영향)

  • Yang, Sin-Chu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.620-627
    • /
    • 2015
  • Long continuous bridge deck can become contracted considerably as temperature drops, which can lead to a large expansion of sleeper span at the end of it. Since this huge sleeper span then can cause problems both with safety of train operation and structural stability of tracks, it is necessary to take the issue into consideration systematically in the designing process of the bridge. In this paper, an evaluation process through the analysis of train-track interaction was presented which can basically review the effects of the expansion of sleeper span at the end of long continuous bridge deck on the safety of the train and the structural stability of the track. The analyses of the interaction between the light rail train and tracks were carried out targeting the sleeper span as a main parameter. The safety of train operation and structural stability of tracks in a light rail system due to the expansion of the sleeper span were evaluated by comparing the numerical results with the related criteria.

An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling (커빅 커플링을 적용한 밀-턴 스핀들의 열-구조 안정성 평가에 관한 해석적 연구)

  • Lee, Choon-Man;Jeong, Ho-In
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.100-107
    • /
    • 2020
  • As demand for high value-added products with hard materials increases, the line center is used for producing high value-added products in many industries such as aerospace, automobile fields. The line center is a key device for smart factory automation that can improve the production efficiency and the productivity. Therefore, the development of a mill-turn line center is necessary to produce high value-added products with complex shapes flexibly. In the mill-turn process, a milling process and a turning process are combined. In particular, the turning process needs to increase the rigidity of the spindle. The purpose of this study is to analyze the thermal-structural stability through thermo-structural coupled analysis for a mill-turn spindle with a curvic coupling. The maximum temperature and thermal stability of the spindle were analyzed by thermal distribution. In addition, the thermal deformation and thermal-structural stability of the spindle were analyzed through thermo-structural coupled analysis.

Evaluations of Sb20Se80-xGex (x = 10, 15, 20, and 25) Glass Stability from Thermal, Structural and Optical Properties for IR Lens Application

  • Jung, Gun-Hong;Kong, Heon;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.484-491
    • /
    • 2017
  • Chalcogenide glasses have been investigated in their thermodynamic, structural, and optical properties for application in various opto-electronic devices. In this study, the $Sb_{20}Se_{80-x}Ge_x$ with x = 10, 15, 20, and 25 were selected to investigate the glass stability according to germanium ratios. The thermal, structural, and optical properties of these glasses were measured by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and UV-Vis-IR Spectrophotometry, respectively. The DSC results revealed that $Ge_{20}Sb_{20}Se_{60}$ composition showing the best glass stability theoretically results due to a lower glass transition activation energy of 230 kJ/mol and higher crystallization activation energy of 260 kJ/mol. The structural and optical analyses of annealed thin films were carried out. The XRD analysis reveals obvious results associated with glass stabilities. The values of slope U, derived from optical analysis, offered information on the atomic and electronic configuration in Urbach tails, associated with the glass stability.

Study on design parameters of leaning-type arch bridges

  • Li, Ying;Xiao, Ru-Cheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.225-232
    • /
    • 2017
  • Leaning-type arch bridge is a new spatial structural system composed of two vertical arches and two leaning arches. So far there has been no contrast analysis of leaning type arch bridge with different systems. This paper focus on a parametric study of leaning type arch bridge with different systems to find the influential rules on structural forces and stability and to provide some reference for practical designs. The parametric analysis is conducted with different rise-to-span ratios and bending rigidities of arch ribs by comparing internal forces. The internal forces decline obviously with the increase of the rise-to-span ratio. The bending moments at the centers of the main arches and the leaning arches are sensitive to the bending rigidities of arch ribs. Parametric studies are also carried out with different structural systems and leaning angles of the leaning arch by comparing the static stability. The lateral stiffness of leaning-type arch bridge is less than the in-plan stiffness. Compared with the leaning-type arch bridge without thrust, the leaning-type arch bridge with thrust has a lower stability safety coefficient. The stability safety coefficient rises gradually with the increase of inclining angle of the leaning arch. This study shows that the rise-to-span ratio, bending rigidities of arch ribs, structural system and leaning angles of the leaning arch are all critical design parameters. Therefore, these parameters in unreasonable range should be avoided.

A Study on the Shape Modeling and Structural Stability of an Icosahedron-typed Modular Dome (정20면체 모듈러 돔의 형상모델링 및 구조안정성에 관한 연구)

  • Shon, Su-Deok;Woo, Hyo-Jun;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.51-59
    • /
    • 2015
  • In this study, a shape design and an analysis considering structural stability were investigated to develop an icosahedron-based hemispherical modular dome. To design this modular dome, a program that can perform icosahedron shape modeling, modularization of joint connection members, and the analysis of structural stability was developed. Furthermore, based on the adopted numerical model, the eigen buckling mode, unstable behavior characteristics according to load vector, and the critical buckling load of the modular dome under uniformly distributed load and concentrated load were analyzed, and the resistance capacities of the structure according to different load vectors were compared. The analysis results for the modular dome suggest that the developed program can perform joint modeling for shape design as well as modular member design, and adequately expressed the nonlinear behaviors of structured according to load conditions. The critical buckling load results also correctly reflected the characteristics of the load conditions. The uniformly distributed load was more advantageous to the structural stability than concentrated load.