• Title/Summary/Keyword: Structural safety of the roof frame

Search Result 11, Processing Time 0.031 seconds

A Study on the Structural Safety of the Roof Improvement Project (슬레이트지붕 개량사업 구조안전성 검토)

  • Kang, Kyung-Soo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • The roof improvement project is being carried out under the government's leadership for the sake of national welfare. The project is to replace the asbestos slate roof with a metallic one. In this study, the structural safety of the improved roof was examined and the project guidelines were reviewed. The causes of the roof damage were investigated and the structural analysis was performed for the roof frame subject to wind and snow loads. Metallic roof assemblies have higher strength and load resistance capability than usual slate ones, so the structural safety is governed by the frame. The stresses of the roof frame elements caused by the wind and snow loads were analyzed according to roof frame with various spacings between the rafters and the purlins. Wind load analysis was performed by 24, 28, and 38 m/sec of the basic wind speed. Snow load analysis was carried out by 0.5, 1.0 and $2.0kN/m^2$ of the ground snow load. As the analysis result, the current spacing and the size of the lumber did not satisfy the Korean building code specification. To secure the safety of the roof improvement project, the spacing of the roof frame elements and the size of the lumber should be determined based on the analysis results by structural engineers.

On Study the Safety Assessment of Accident Electric Multiple Units (전동차 구조체의 안전성 평가 연구)

  • 정종덕;김정국;편장식;김원경;홍용기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1105-1108
    • /
    • 2004
  • This paper describes the structural analysis result and load test result of accident EMU(Electric Multiple Units). Structural analysis and load test of EMU were performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The purpose of the load test is to evaluate a safety which carbody structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. The results have been used to provide the critical information for the criteria of safety assessment.

  • PDF

Structural Strength Evaluation of a Carbody by Finite Element Analysis and Tests (구조해석 및 시험에 의한 경량화 차체 구조강도 평가)

  • Yoon S.C.;Kim W.K.;Jun C.S.;Kim M.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.49-54
    • /
    • 2005
  • This paper describes the result of structure analysis and load test of body structure. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. Body structure consist of side frame, under frame, roof frame, end frame. Both FEM analysis and load test are based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000' and reference code is JIS E 7105. The test results have been very safety and stable fer design load conditions.

  • PDF

Development on the Aluminum Carbody for Rubber-Tired AGT Vehicle (고무차륜형 AGT 경량전철 차량용 알루미늄 차체의 개발)

  • Kim, Yeon-Su;Park, Sung-Hyuk;Baek, Nam-Uk;Kim, Dong-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1118-1123
    • /
    • 2003
  • Based on the design requirements(size, strength, structure, weight, and etc.) for the rubber-tired AGT vehicle, carbody made of aluminum alloy is designed. The analysis of strength and stiffness is performed in the designed carbody, which results in the modification for optimal shapes and structures. It consists of a under frame, side frame, roof frame, end frame and forehead frame. After the carbody manufactured, tests are performed, which are vertical load test, longitudinal compressive load test, twisting load test, twisting natural frequency measurement, bending natural frequency measurement and 3 points supporting test. Results of them can guarantee a structural safety.

  • PDF

A Basic Study on Feasibility Analysis for Solar Energy Facility using Standard Broiler House Roof (표준육계사의 지붕을 활용한 태양에너지 설비 타당성 분석에 관한 기초 연구)

  • Kim, Jin-Hyun;Jung, Sung-Jin;Kim, Tae-Wook;Choi, Jun-Hak;Ha, Yu-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.57-65
    • /
    • 2014
  • In order to reduce greenhouse gas emissions in recent agricultural energy and increase the energy self-sufficiency rate of each farmer, it is extremely important to expand the supply of solar energy using unused space of agricultural facilities, roof. This study surveyed and analyzed the environmental and administrative factors such as problems according to the structure, azimuth and latitude of broiler houses and stability of standard broiler houses required to use broiler house roof based on the poultry houses in Sangju-si. The results can be summarized as follows: 55.6% of the solar energy facilities of according to the classification of arable lands of broiler houses were available, and 31.7% of them were available by classifying according to the azimuth. However, 20.6% of them were available in the survey considering all the arable land and azimuth. In the roof inclination of the broiler houses, from 20 to $25^{\circ}$ was the most common, 30 broiler houses. The broiler houses with the roof inclination more than $20^{\circ}$ accounted for 63% of the total. It was considered that the inclination was generally proper. In the structural safety, only 3 broiler houses that were constructed as a standard broiler house were available. In practice, all but one broiler house was inappropriate to expand the solar energy project using roof. The solar thermal facility weighed $63.6kg/m^2$ in total: the frame and solar thermal collector weighed $27.8kg/m^2$ and $35.8kg/m^2$, respectively. The standard broiler house required to be internally reinforced. This study suggested a plan for internal reinforcement and a feasible plan because there were problems with structural safety when installing solar thermal and photovoltaic systems.

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

A Study on the Weight-Reduction Design of High-Speed Maglev Carbody made of Aluminum Extrusion and Sandwich Composite Roof (알루미늄 압출재와 샌드위치 복합재 루프를 적용한 초고속 자기부상 열차의 차체 경량화 설계 연구)

  • Kang, SeungGu;Shin, KwangBok;Park, KeeJun;Lee, EunKyu;Yoon, IllRo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1093-1100
    • /
    • 2014
  • The purpose of this paper is to suggest a weight-reduction design method for the hybrid carbody of a high-speed maglev train that uses aluminum extrusion profiles and sandwich composites. A sandwich composite was used on the roof as a secondary member to minimize the weight. In order to assemble the sandwich composite roof and aluminum extrusion side frame of the carbody using welding, a guide aluminum frame located at the four sides of the sandwich composite roof was introduced in this study. The clamping force of this guide aluminum frame was verified by three-point bending test. The structural integrity and crashworthiness of the hybrid carbody of a high-speed maglev train were evaluated and verified according to the Korean Railway Safety Law using a commercial finite element analysis program. The results showed that the hybrid carbody composed of aluminum extrusion frames and a sandwich composite roof was lighter in weight than a carbody made only of aluminum extrusion profiles and had better structural performance.

Instrumentation and system identification of a typical school building in Istanbul

  • Bakir, Pelin Gundes
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.179-197
    • /
    • 2012
  • This study presents the findings of the structural health monitoring and the real time system identification of one of the first large scale building instrumentations in Turkey for earthquake safety. Within this context, a thorough review of steps in the instrumentation, monitoring is presented and seismic performance evaluation of structures using both nonlinear pushover and nonlinear dynamic time history analysis is carried out. The sensor locations are determined using the optimal sensor placement techniques used in NASA for on orbit modal identification of large space structures. System identification is carried out via the stochastic subspace technique. The results of the study show that under ambient vibrations, stocky buildings can be substantially stiffer than what is predicted by the finite element models due to the presence of a large number of partitioning walls. However, in a severe earthquake, it will not be safe to rely on this resistance due to the fact that once the partitioning walls crack, the bare frame contributes to the lateral stiffness of the building alone. Consequently, the periods obtained from system identification will be closer to those obtained from the FE analysis. A technique to control the validity of the proportional damping assumption is employed that checks the presence of phase difference in displacements of different stories obtained from band pass filtered records and it is confirmed that the "proportional damping assumption" is valid for this structure. Two different techniques are implemented for identifying the influence of the soil structure interaction. The first technique uses the transfer function between the roof and the basement in both directions. The second technique uses a pre-whitening filter on the data obtained from both the basement and the roof. Subsequently the impulse response function is computed from the scaled cross correlation between the input and the output. The overall results showed that the structure will satisfy the life safety performance level in a future earthquake but some soil structure interaction effects should be expected in the North South direction.

A Study on the Ancient Architecture in view of the Stone Remains (focused on the 3 Kingdom Period and Unificated Shilla Period) (석조유구(石造遺構)를 통한 한국(韓國) 고대건축(古代建築)에 관한 연구(硏究) -삼국시대와 통일신라시대를 중심으로-)

  • Cheon, Deuk-Youm;Park, Ji-Min
    • Journal of architectural history
    • /
    • v.8 no.3 s.20
    • /
    • pp.23-38
    • /
    • 1999
  • The purpose of this study is to analogize the appearance of Korean Ancient Architecture in view of the Stone Remains from 3 Kingdom Period to Unificated Shilla Period. But in these period, there is no building remains but some stupas and fine arts. Especially, there are many architectural appearance and revealing signature in these Historical Stone remains. Architectural elements which are analogized by stone remains what has value as historical materials by preservation of original form from 3 Kingdom Preiod to Unificated Shilla Period are as follows : 1) Platform, the representative characteristic of Korean traditional architecture, was frame structure and accumulate structure. And circular or square footing stood a same shape column on it is put on the platform. 2) In the case of column, there used entasis column and inclined column and circular chamfer technique was applied on the top side of it. Upper side of column, capital and head pentrating tie that small bearing block was put on the center of it was joined. And longitu야nal rest(長舌) supported a cross beam. Capital and small bearing block had no bottom heel, and heel side was curved and straight. Centered bracket structure was often used, and multi bracket structure is not used yet. Inward incline technique was used. 3) Inward opening pair door which had lintel, threshold, doorjamb was usually used, Fixing stone was used for structural safety, and circular handle and lock was used for decoration. Handrail was used on the edge of wooden floor for decorative effect and safety. 4) Square rafter and circular rafter were used in the same period and so did flying rafter. Double eaves and single eave were used in the same period but, single eave was usually used. In this period, square rafter was usually used. This would be studied more by comparing with Japanese wooden architecture. 5) Hipped roof was used and half-hipped roof was not used yet. In front of th hip, there are small sculpture called Jap-Sang(雜像), and windbell was hang on the end of the hip rafter. Concave roof tile, convex roof tile, round eaver tile, decorative tile at end of roof ridge were used. Lotus style was well used on the face of roof tile for decoration. From the results of this study, wooden architecture of Unificated Shilla period was simple compare to Koryo dynasty and Chosun dynasty but, it had some brilliant character. It was hard work that analogized the form of non-existent wood architecture of Ancient Korean period by restricted stone remains. But, in addition to the results of this study and research of old documentations, more study should be go on.

  • PDF

Risk evaluation of steel frames with welded connections under earthquake

  • Song, Jianlin;Ellingwood, Bruce R.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.663-672
    • /
    • 2001
  • Numerous failures in welded connections in steel moment-resisting building frames (SMRF) were observed when buildings were inspected after the 1994 Northridge Earthquake. These observations raised concerns about the effectiveness of such frames for resisting strong earthquake ground motions. The behavior of SMRFs during an earthquake must be assessed using nonlinear dynamic analysis, and such assessments must permit the deterioration in connection strength to capture the behavior of the frame. The uncertainties that underlie both structural and dynamic loading also need to be included in the analysis process. This paper describes the analysis of one of approximately 200 SMRFs that suffered damage to its welded beam-to-column connections from the Northridge Earthquake is evaluated. Nonlinear static and dynamic analysis of this SMRF in the time domain is performed using ground motions representing the Northridge Earthquake. Subsequently, a detailed uncertainty analysis is conducted for the building using an ensemble of earthquake ground motions. Probability distributions for deformation-related limit states, described in terms of maximum roof displacement or interstory drift, are constructed. Building fragilities that are useful for condition assessment of damaged building structures and for performance-based design are developed from these distributions.