• Title/Summary/Keyword: Structural response analysis

Search Result 2,932, Processing Time 0.036 seconds

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).

Effect of Mediating Variable on the Relationship between Job Stress and Stress Response among Clinical Dental Hygienists (임상치과위생사에서 직무스트레스와 스트레스 반응에 있어 매개요인의 영향)

  • Choi, Ja-Hyeong;Choi, Jun-Seon
    • Journal of dental hygiene science
    • /
    • v.14 no.2
    • /
    • pp.114-122
    • /
    • 2014
  • The purpose of this study was to analyze the effect of mediating variables on the relationship between job stress and stress response. A survey was conducted to 243 clinical dental hygienists from January 15, 2013 to March 20, 2013 and the data were analyzed using t-test, one-way ANOVA, Pearson's correlation analysis, and hierarchical multiple regression analysis. The subjects who worked in poor working environment, had high level of role conflict and overload and aggressive nature showed high stress responsivity (p<0.01). The variable that showed mediation effect on the relationship between job stress and physical discomfort, depression was shown to be personality type (p<0.05). Also, the variable that showed mediation effect on the relationship between job stress and turnover intention was social support (p<0.05). According to the results, personality type and social support were shown to be important parameters when it came to the relationship between job stress and stress response. Therefore, in order to reduce negative outcomes caused by stress, it is suggested to provide an educational opportunity on self-control management while increasing social support from the organizational and structural level. Especially, it is asked to expand the system that provides encouragement and recognition to feel the sense of achievement in the course of their duty execution.

A Recovery Technique of PDF File in the Unit of Page (PDF 파일의 페이지단위 복구 기법)

  • Jang, Jeewon;Bang, Seung Gyu;Han, Jaehyeok;Lee, Sang Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • The influence of the data deletion method which is one of anti-forensic techniques is substantial in terms of forensic analysis compared to its simplicity of the act. In academic world, recovery techniques on deleted files have been continuously studied in response to the data deletion method and representatively, the file system-based file recovery technique and file format based recovery technique exist. If there's metadata of deleted file in file system, the file can be easily recovered by using it, but if there's no metadata, the file is recovered by using the signature-based carving technique or the file format based recovery technique has to be applied. At this time, in the file format based recovery technique, the file structure analysis and possible recovery technique should be provided. This paper proposes the page recovery technique on deleted PDF file based on the structural characteristics of PDF file. This technique uses the tag value of page object which constitutes one page of PDF file. Object is extracted by utilizing each tag value as a kind of signature and by analyzing extracted object, the metadata of PDF file is recombined and then it's reconfigured page by page. Recovering by page means that even if deleted PDF file is damaged, even some pages consisting of PDF file can be recovered. Generally, if the file system based file is not recoverable, deleted file is recovered by applying the signature based carving technique. The technique which we proposed in this paper can recover PDF files that are damaged. In the digital forensic perspective, it can be utilized to recover more data than previously.

Implementation and Evaluation of a Web Ontology Storage based on Relation Analysis of OWL Elements and Query Patterns (OWL 요소와 질의 패턴에 대한 관계 분석에 웹 온톨로지 저장소의 구현 및 평가)

  • Jeong, Dong-Won;Choi, Myoung-Hoi;Jeong, Young-Sik;Han, Sung-Kook
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.231-242
    • /
    • 2008
  • W3C has selected OWL as a standard for Web ontology description and a necessity of research on storage models that can store OWL ontologies effectively has been issued. Until now, relational model-based storage systems such as Jena, Sesame, and DLDB, have been developed, but there still remain several issues. Especially, they lead inefficient query processing performance. The structural problems of their low query processing performance are as follow: Jena has a simple structure which is not normalized and also stores most information in a single table. It exponentially decreases the performance because of comparison with unnecessary information for processing queries requiring join operations as well as simple search. The structures of storages(e.g., Sesame) have been completely normalized. Therefore it executes many join operations for query processing. The storages require many join operations to find simply a specific class. This paper proposes a storage model to resolve the problems that the query processing performance is decreased because of non-normalization or complete normalization of the existing storages. To achieve this goal, we analyze the problems of existing storage models as well as relations of OWL elements and query patterns. The proposed model, defined with the analysis results, provides an optimal normalized structure to minimize join operations or unnecessary information comparison. For the experiment of query processing performance, a LUBM data sets are used and query patterns are defined considering search targets and their hierarchical relations. In addition, this paper conducts experiments on correctness and completeness of query results to verify data loss of the proposed model, and the results are described. With the comparative evaluation results, our proposal showed a better performance than the existing storage models.

Variation of Harbor Response due to Construction of A New Port in Youngil Bay (영일만 신항 건설에 따른 항만 정온도의 변화)

  • Lee, Hoon;Lee, Hak-Seung;Yang, Sang-Yong;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.179-186
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Pohang Old Harbor and Pohang New Port, etc. due to construction of New Port in Youngil Bay. This type of trial might be a milestone for port development in macroscale, where the induced impact analysis in the existing port due to the developemnt could be easily neglected.

  • PDF

Dynamic Behavior of the Prestressed Composite Girder by Modal Tests and Moving Train Analysis (프리스트레스트 강합성 거더의 모달테스트 및 이동 열차하중 해석에 의한 동적거동)

  • Kim, Sung Il;Lee, Pil Goo;Lee, Jung Whee;Yeo, In Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.793-804
    • /
    • 2006
  • Various PSC and steel-concrete composite railway bridges are being developed for short-medium spans with structural and economic efficiency. According to the design concept, the prestressed composite girder bridge has the advantages of being lightweight and having low girder depth, with the capacity for long spans. However, the dynamic behavior under a passing train is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate the modal parameters before performing dynamic analyses. In this paper, real-scale prestressed composite girders were fabricated as a test model and modal testing was carried out to evaluate modal parameters including natural frequency and modal damping ratio. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer was applied to obtain frequency-response functions, and the modal parameters were also evaluated after the fracture of test models. With application of reliable properties from modal tests, the estimation of dynamic performances of prestressed composite girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of a moving train.

Variation of Harbor Response due to Construction of A New Port in Youngil Bay (영일만 신항 건설에 따른 항만 정온도의 변화)

  • Kim, Ji-Yeon;Lee, Joong-Woo;Lee, Hak-Seung;Yang, Sang-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.421-428
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Pohang Old Harbor and Pohang New Port, etc. due to construction of New Port in Youngil Bay. This type of trial might be a milestone for port development in macroscale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Identification of Dynamic Characteristics Using Vibration Measurement Data of Saemangeum Mangyeong Offshore Observation Tower and Numerical Model Updating by Pattern Search Method (새만금 만경해상관측타워의 진동계측자료를 이용한 동특성 분석과 패턴서치 방법에 의한 수치해석모델 개선)

  • Park, Sangmin;Yi, Jin-Hak;Cho, Cheol-Ho;Park, Jin-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.285-295
    • /
    • 2020
  • In the case of small observation towers located at sea, it is necessary to confirm the change in dynamic characteristics due to the influence of environmental loads. In this study, the dynamic characteristics were analyzed and the numerical analysis model was designed through field dynamic response measurement on the Mangyeong Offshore Observation Tower (Mangyeong Tower) located near the Saemangeum Embankment. As a result of the measurement, the natural frequency was found to increase slowly as the tide level is lowered. In addition, it was confirmed that the same mode has two frequencies, which was judged to be a phenomenon in which the natural frequency was partially increased when the pile and the ground contacted by scouring. For numerical analysis, the upper mass, artificial fixity point, scour depth and fluid influences are reflected in the structural characteristics of the Mangyeong Tower. In addition, the model updating from the estimated natural frequency and pattern search algorithm was performed. From the model updating, it is expected that it can be applied to future studies on stability of Mangyeong Tower.

A Study on Shape Optimization of Distributed Actuators using Time Domain Finite Element Method (시간유한요소법을 이용한 분포형 구동기의 형상최적화에 관한 연구)

  • Suk, Jin-Young;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.56-65
    • /
    • 2005
  • A dynamic analysis method that freezes a time domain by discretization and solves the spatial propagation equation has a unique feature that provides a degree of freedom on spatial domain compared with the space discretization or space-time discretization finite element method. Using this feature, the time finite element analysis can be effectively applied to optimize the spatial characteristics of distributed type actuators. In this research, the time domain finite element method was used to discretize the model. A state variable vector was used in the discretization to include arbitrary initial conditions. A performance index was proposed on spatial domain to consider both potential and vibrational energy, so that the resulting shape of the distributed actuator was optimized for dynamic control of the structure. It is assumed that the structure satisfies the final rest condition using the realizable control scheme although the initial disturbance can affect the system response. Both equations on states and costates were derived based on the selected performance index and structural model. Ricatti matrix differential equations on state and costate variables were derived by the reconfiguration of the sub-matrices and application of time/space boundary conditions, and finally optimal actuator distribution was obtained. Numerical simulation results validated the proposed actuator shape optimization scheme.

Cloning and Structural Analysis of bfmo Operon in Methylophaga aminosulfidovorans SK1 (Methylophaga aminosulfidovorans SKI bfmo 오페론의 클로닝 및 구조 분석)

  • Lim Hyun Sook;Goo Jae Whan;Kim Lee Hyun;Kim Si Wouk;Cho Eun Hee
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Methylophaga aminosulfidovorans SK1 (KCTC 10323 BP) can utilize trimethylamine as a sole carbon, nitrogen, and energy source. The bacterial flavin-containing monooxygenase (bFMO) gene was identified in the strain and the recombinant enzyme expressed in E. coli oxidized trimethylamine. To study the function and regulation of the bfmo, over 8,000 nucleotide sequences of the neighboring regions including the bfmo were determined. Three open reading frames proceeding to the bfmo gene encoded analogues to highly conserved nitrate/nitrite sensing two-component system regulators and a methyl accepting protein. Two small open reading frames just downstream of the bfmo gene showed no similar proteins of known functions but the sequences were conserved among other bacteria. Reverse transcription-polymerase chain reaction analysis showed that the six putative genes consisted of three transcription units. The three regulatory genes located upstream of the bfmo gene formed two separate transcription units. The bfmo and the two downstream genes were transcribed from a single promoter.