• 제목/요약/키워드: Structural reinforcement

검색결과 1,700건 처리시간 0.03초

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.

연결보의 배근 상세 효과 평가 (Evaluation of Reinforcement Detail Effect on Coupling Beams)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권2호
    • /
    • pp.49-57
    • /
    • 2021
  • 본 연구에서는 특수 전단벽 연결보의 배근 상세를 개선하여 구조 성능의 확보는 물론 시공성을 개선한 연구를 진행하였다. 기존 대각선 다발철근과 전단 보강근을 배근한 실험체를 기본으로 이를 굵은 대각철근으로 교체한 실험체, 수평 보강근으로 교체한 실험체를 변수로 선정하였다. 실험결과 기존 대각보강근을 굵은 직경의 철근으로 대체한 실험체가 기본 실험체와 유사한 거동을 보여 복잡합 연결보 보강 상세의 대안으로 적용 가능한 것으로 평가되었다.

철근콘크리트 무량판 슬래브의 수직걸림형 전단보강재의 수평하중에 대한 실험적 연구 (An Experimental Study on Lateral Load of Vertically Suspended Shear Reinforcement for Reinforced Concrete Flat Plate slab)

  • 우종열;김재웅;유충근;강수민;이병한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.78-79
    • /
    • 2014
  • This study is concerned with the VS shear reinforcement that it can be installed easily in filed as product at the factory and seismic performance can be achieved. The method of study is as follows. first, we researched constructability and economy of existing construction method. Secondly, we made specimen and were examined structural performance tests in order to verify the performance of the shear reinforcement for lateral force like seismic load. As a result, developed VS shear reinforcement increased in shear strength and stiffness of reinforcement, structural safety is judged to be increased.

  • PDF

Effects of confinement reinforcement and concrete strength on nonlinear behaviour of RC buildings

  • Yon, Burak;Calayir, Yusuf
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.279-297
    • /
    • 2014
  • This paper investigates the effects of confinement reinforcement and concrete strength on nonlinear behaviour of reinforced concrete buildings (RC). For numerical application, an eleven-storey and four bays reinforced concrete frame building is selected. Nonlinear incremental static (pushover) analyses of the building are performed according to various concrete strengths and whether appropriate confinement reinforcement, which defined in Turkish seismic code, exists or not at structural elements. In nonlinear analysis, distributed plastic hinge model is used. As a result of analyses, capacity curves of the frame building and moment-rotation curves at lower end sections of ground floor columns are determined. These results are compared with each other according to concrete strength and whether appropriate confinement reinforcement exists or not, respectively. According to results, it is seen that confinement reinforcement is important factor for increasing of building capacity and decreasing of rotations at structural elements.

에폭시모르타르로 보강된 부식철근 RC보의 구조적 성능 (Structural Performance of Reinforcement corrosion RC Beams Strengthened with Epoxy Mortar System)

  • 한복규;홍건호;신영수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of this study was to investigate the structural performance of reinforcement corrosion reinforced concrete beams strengthened with epoxy mortar system. Main test parameters are existence and the magnitude of the reinforcement corrosion and the reinforcing bar and the tensile reinforcement ratio of the specimens. eight beam specimens were tested to investigate the effectiveness of each test variables on maximum load capacity and failure mode. Test results showed that the ultimate moment of th specimens were higher tan the nominal moment and the flexural stiffness was increased about 2.5 times and the cracking moments occurred over 60% of the failure moment in comparison with same sized control beam. However, note that epoxy mortar may conduct member into brittle failure mode.

  • PDF

철근콘크리트 무량판 슬래브의 수직걸림형 전단보강재에 관한 실험적 연구 (An Experimental Study of Vertically Suspended Shear Reinforcement for Reinforced Concrete Flat Plate slab)

  • 우종열;홍성욱;도선붕;김상원
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.173-174
    • /
    • 2012
  • This study is concerned with the VSTUD shear reinforcement that it can be installed easily in filed as product at the factory and seismic performance can be achieved. The method of study is as follows. first, we researched constructability and economy of existing method. Secondly, we made specimen and were examined structural performance tests in order to verify the performance of the shear reinforcement. As a result, developed SL shear reinforcement increased in shear strength and stiffness of reinforcement, structural safety is judged to be increased.

  • PDF

감육 배관의 다양한 보강 형태에 따른 이론적 등가 강성 검증 (Analytical Equivalent Stiffness Analysis for Various Reinforcements of Wall-thinned Pipe)

  • 장제훈;김지수;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.11-18
    • /
    • 2022
  • When wall-thinning in a pipe occurs during operation of nuclear power plant, reinforcement of the pipe needs to be performed. Accordingly, the structural response of the piping system due to introduction of the reinforcement may be re-evaluated. For elastic structural analysis of the piping system with the reinforced pipe using finite element (FE) analysis, the stiffness of the reinforced pipe is needed. In this study, the stiffness matrix of wall-thinned pipe with pad reinforcement or composite reinforcement is analytically derived. The validity of the proposed equations is checked by comparing with systematic finite element (FE) analysis results.

강판으로 보강된 철근콘크리트 기둥의 구조적 거동에 관한 실험적 연구 (An Experimental Study on the Structural Behavior of Reinforced Concrete Columns Rehabilitated with Epoxy-Bonded Steel Plates)

  • 김진배;원영술;조철호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권3호
    • /
    • pp.269-277
    • /
    • 1999
  • The purpose of this study is to investigate the structural behavior of reinforced concrete columns rehabilitated with epoxy-bonded steel plates subjected to axial load. Eleven specimens were made to evaluate structural capacity of reinforced concrete columns rehabilitated with steel plates. This study considers the change of the internal force and the deformation of reinforced concrete column with reinforcing steel plates, and analyzes the effect of the improvement of strength and ductility. Based on the test results, this study brings the following conclusions. In case of the effect of reinforcement by the ratio of the same volume, the internal force for the test model, which the width of the reinforcing steel plate is small, is effectively higher. The smaller the width and the thickness of reinforcing steel plate, the more effective the effect of reinforcement is. For applying the theorical equation by Uzumeri, the maximum load and the coefficient of effective crossing reinforcement by the width and the thickness of steel plate reflected the properties of reinforcing steel plate.

  • PDF

강판 또는 탄소섬유시트 보강된 수평 구조 부재의 안전성 평가시 고려사항 (Considerations in the Safety Evaluation of the Lateral Structural Members Reinforced with Steel Plate or CFRP Sheet)

  • 강석원;박형철;오보환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.331-334
    • /
    • 2003
  • Since regulation or specification for the reinforcing method are quite ambiguous, structural design for the reinforcement can be subjectively and arbitrarily conducted. Thus, reasonable limitation and guide for the quantity of the reinforcement are required for the safe use of the structure after repair. In order to guarantee the safety of the structural member several items should be considered; reinforcing limit to avoid the brittle failure, least required strength of the existing member before reinforcement in order not to fail under the new serviceability load condition when reinforcing steel plates or CFRP sheets are harmed or subjected to fire.

  • PDF

자전거 프레임 특정부분의 보강효과와 프레임에 미치는 응력과 변형 연구

  • 김태훈;양동민;하윤수
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, 2 kinds of models about bike frame are simulated with static structural analysis. A bike frame with diamond type is compared with another model that Down tube is eliminated from original diamond frame. About both types of models, Property of a material and conditions of restriction & load are the same. This study shows reinforcement effects of a partial frame by adding down tube and impacts generated by applying a load at the frame such as weak points & high stress parts as well as expected deformation. The structural result of this study indicates that the equivalent stress or total deformation decreases by 57.1% or 36.4%, respectively. Also stress concentration sites are leg connecting parts, front/rear wheels fixed region and Max deformation is generated from Seat tube. In conclusion, A Down tube is highly efficient as reinforcement than frame without non down tube. Furthermore, The safety rises in case of reducing top tube thickness and increasing a reinforcement at leg connecting parts or concentration regions.

  • PDF