• 제목/요약/키워드: Structural performance optimization

검색결과 569건 처리시간 0.025초

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

Damage detection technique in existing structures using vibration-based model updating

  • Devesh K. Jaiswal;Goutam Mondal;Suresh R. Dash;Mayank Mishra
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.63-86
    • /
    • 2023
  • Structural health monitoring and damage detection are essential for assessing, maintaining, and rehabilitating structures. Most of the existing damage detection approaches compare the current state structural response with the undamaged vibrational structural response, which is unsuitable for old and existing structures where undamaged vibrational responses are absent. One of the approaches for existing structures, numerical model updating/inverse modelling, available in the literature, is limited to numerical studies with high-end software. In this study, an attempt is made to study the effectiveness of the model updating technique, simplify modelling complexity, and economize its usability. The optimization-based detection problem is addressed by using programmable open-sourced code, OpenSees® and a derivative-free optimization code, NOMAD®. Modal analysis is used for damage identification of beam-like structures with several damage scenarios. The performance of the proposed methodology is validated both numerically and experimentally. The proposed method performs satisfactorily in identifying both locations and intensity of damage in structures.

선택적 요소 방법을 이용한 2차원 구조물의 형상 최적설계 기법 개발 (Development of 2D Structural Shape Optimization Scheme Using Selective Element Method)

  • 심진욱;신정규;박경진
    • 한국전산구조공학회논문집
    • /
    • 제15권4호
    • /
    • pp.599-607
    • /
    • 2002
  • 형상 최적설계 중에 발생하는 절점의 과도한 이동은 요소망을 왜곡하고, 결국 최적해의 저하를 유발한다. 이러한 문제를 개선한 형상 최적설계 기법을 개발하였다. 이 방법은 구조물의 형상이 변해 갈 수 있는 충분한 공간의 설계 영역을 정하여, 균일하고 세밀한 요소망을 미리 생성한다. 각각의 최적화 단계마다 모든 요소들과 구조물의 위치 관계를 검사하여, 내부의 요소에는 실제의 물성치를 부여하고, 외부에 존재하는 요소는 0에 가까운 물성치를 부여한다. 변위와 고유 진동수의 제한조건을 가진 두 개의 예제를 통해 이 방법의 특징을 살펴보았다.

입체 트러스구조물의 최적설계를 위한 SA기법 (Simulated Annealing Algorithm for Optimum Design of Space Truss Structures)

  • 정제원;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.102-109
    • /
    • 1999
  • Two phase simulated annealing algorithm is presented as a structural optimization technique and applied to minimum weight design of space trusses subjected to stress and displacement constraints under multiple loading conditions. Univariate searching algorithm is adopted for automatic selection of initial values of design variables for SA algorithm. The proper values of cooling factors and reasonable stopping criteria for optimum design of space truss structures are proposed to enhance the performance of optimization process. Optimum weights and design solutions are presented for two well-blown example structures and compared with those reported in the literature.

  • PDF

선택적 요소방법을 이용한 형상 최적 설계 기법 개발 (Development of Shape Optimization Scheme Using Selective Element Method (Application to 2-D Problems))

  • 심진욱;신정규;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.531-536
    • /
    • 2001
  • The structural shape optimization is a useful tool for engineers to determine the shape of a structure. During the optimization process, relocations of nodes happen successively. However, excessive movement of nodes often results in the mesh distortion and eventually deteriorates the accuracy of the optimum solution. To overcome this problem, an efficient method for the shape optimization has been developed. The method starts from the design domain which is large enough to hold the possible shape of the structure. The design domain has pre-defined uniform fine meshes. At every cycle, the method judges whether all the elements are inside of the structure or not. Elements inside of the structure are assigned with real material properties, however elements outside of the structure are assigned with nearly zero values. The performance of the method is evaluated through various examples.

  • PDF

Structural design using topology and shape optimization

  • Lee, Eun-Hyung;Park, Jaegyun
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.517-527
    • /
    • 2011
  • A topology optimization and shape optimization method are widely used in the design area of engineering field. In this paper, a unified procedure to combine both topology and shape optimization method is used. A material distribution method is used first to extract necessary design parameters of the structure and a shape optimization scheme using genetic algorithm and satisfying all the condition follows. As an example, a GFRP bridge deck is designed and compared with other commercial products. The performance of the designed deck shows that the used design procedure is very efficient and safe. This procedure can be generalized for using in other areas of engineering.

Design of steel frames by an enhanced moth-flame optimization algorithm

  • Gholizadeh, Saeed;Davoudi, Hamed;Fattahi, Fayegh
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.129-140
    • /
    • 2017
  • Structural optimization is one of the popular and active research areas in the field of structural engineering. In the present study, the newly developed moth-flame optimization (MFO) algorithm and its enhanced version termed as enhanced moth-flame optimization (EMFO) are employed to implement the optimization process of planar and 3D steel frame structures with discrete design variables. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. A number of benchmark steel frame optimization problems are solved by the MFO and EMFO algorithms and the results are compared with those of other meta-heuristics. The obtained numerical results indicate that the proposed EMFO algorithm possesses better computational performance compared with other existing meta-heuristics.

Topological optimization procedure considering nonlinear material behavior for reinforced concrete designs

  • Franca, Marcela Bruna Braga;Greco, Marcelo;Lanes, Ricardo Morais;Almeida, Valerio Silva
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.141-156
    • /
    • 2016
  • The search for new structural systems capable of associating performance and safety requires deeper knowledge regarding the mechanical behavior of structures subject to different loading conditions. The Strut-and-Tie Model is commonly used to structurally designing some reinforced concrete elements and for the regions where geometrical modifications and stress concentrations are observed, called "regions D". This method allows a better structural behavior representation for strength mechanisms in the concrete structures. Nonetheless, the topological model choice depends on the designer's experience regarding compatibility between internal flux of loads, geometry and boundary/initial conditions. Thus, there is some difficulty in its applications, once the model conception presents some uncertainty. In this context, the present work aims to apply the Strut-and-Tie Model to nonlinear structural elements together with a topological optimization method. The topological optimization method adopted considers the progressive stiffness reduction of finite elements with low stress values. The analyses performed could help the structural designer to better understand structural conceptions, guaranteeing the safety and the reliability in the solution of complex problems involving structural concrete.