• Title/Summary/Keyword: Structural performance optimization

Search Result 569, Processing Time 0.023 seconds

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

A Study on the Optimum Cross-section and Tendon Profiles of 60 m span Half-Decked PSC Girder Bridge (Half-Deck을 포함한 60 m 경간 PSC 거더의 단면 및 텐던 프로파일 최적화 연구)

  • Kim, Tae Min;Kim, Do-Hak;Kim, Moon Kyum;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.417-424
    • /
    • 2011
  • This study focused on development of 60 m span PSC girder considering not only structural performance, but also economical efficiency and constructability including from the improvement of cross-section to the tendon profiles in sequence. Bulb-T type cross section was derived from optimization and actual possibilities to design a bridge were assessed through cross section evaluation. Tendons were also arranged efficiently so that the girder could resist the service load effectively. After developed girder was applied to a sample bridge, result of finite element analysis proved all load steps were satisfied with the allowable stress. Furthermore, it seemed that sufficient redundancy will be available to design a bridge safely. Based on these, a full-scale 60 m span girder was fabricated and 4 point bending test was performed. An initial crack occurred over twice of the service load in this experiment, which establishes adequate structural performance. 60 m span Half-Decked PSC girder developed in this study has a lower height for the given span which resulted from cross section improvement and efficient tendon layout. This girder also has not only the structural advantage, but also advantages in economical efficiency and constructability.

A Study on the Structural Integrity of the First Stage Turbine Blade Caused by Thermal Barrier Coatings and the Cooling Design of the Nozzle (터빈 노즐 및 열차폐 코팅에 따른 고압 1 단 터빈 블레이드의 구조 건전성 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • High pressure nozzles and turbines of a gas turbine engine should be required to be operated under extreme operating conditions in order to maximize the performance. Engine manufactures have utilized nickel-base superalloys, enhanced cooling design, and thermal barrier coating techniques to overcome them and furthermore, material modeling, finite element analysis, optimization techniques, and etc. have been utilized widely for elaborate predictions. We aim to evaluate the effects on the low cycle fatigue life of the high pressure turbine blade caused by thermal barrier coatings and the cooling design of the endwall of the first stage turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and then the results were the input for the assessment of low cycle fatigue life at several critical zones.

A simulation study on the structural optimization of a 800V 4H-SiC Power DMOSFET (800V급 4H-SiC DMOSFET 전력 소자 구조 최적화 시뮬레이션)

  • Choi, Chang-Yong;Gang, Min-Seok;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.35-36
    • /
    • 2009
  • In this work, we demonstrate 800V 4H-SiC power DMOSFETs with several structural alterations to obtain a low threshold voltage ($V_{TH}$) and a high figure of merit ($V_B^2/R_{SP,ON}$). To optimize the device performance, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. These parameters are optimized using 2D numerical simulation and the 4H-SiC DMOSFET structure results in a threshold voltage ($V_{TH}$) below ~3.8V, and high figure of merit ($V_B^2/R_{SP,ON}$>${\sim}200MW/cm^2$) for a power MOSFET in $V_B$-800V range.

  • PDF

Knowledge-based Expert System for the Preliminary Ship Structural Design (선체 구조설계를 위한 지식 베이스 전문가 시스템)

  • Y.S. Yang;Y.S. Yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.1-13
    • /
    • 1992
  • The objective of this study is to develop knowledge-based system for the preliminary design and midship section design of bulk carrier and to enhance the applicability of knowledge engineering in the field of Naval Architecture. First, expert system shell called E.1 is developed in C language. E.1 supports backward-chaining, automatic iteration procedure and reiterative inference mechanism for efficient application of knowledge-based system in structural design. Knowledge representation in E.1 includes IF-THEN rules, 'facts'and 'tables'. Second, knowledge bases for the principal particulars and midship section design are developed by experimental formula, design standard and experiential knowlege. Third, hybrid system combined this knowledge-based system with the optimization program of midship section is developed. Finally, the simplified design method utilizing the regression analysis of the optimum results of stiffened plate is developed for facilitating the design process. Using this knowledge-based system, the design process and results for Bulk carrier and stiffened plates are discussed. It is concluded that knowledge-based system is efficient for preliminary design and midship section design of the ship. It is expected that the performance of the CAD system would be enhanced if the better knowledge-base is accumulated in the E.1 tool.

  • PDF

Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations

  • Lin, S.T.K.;Lu, Y.;Alamdari, M.M.;Khoa, N.L.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.293-303
    • /
    • 2022
  • As infrastructure ages and traffic load increases, serious public concerns have arisen for the well-being of bridges. The current health monitoring practice focuses on large-scale bridges rather than short span bridges. However, it is critical that more attention should be given to these behind-the-scene bridges. The relevant information about the construction methods and as-built properties are most likely missing. Additionally, since the condition of a bridge has unavoidably changed during service, due to weathering and deterioration, the material properties and boundary conditions would also have changed since its construction. Therefore, it is not appropriate to continue using the design values of the bridge parameters when undertaking any analysis to evaluate bridge performance. It is imperative to update the model, using finite element (FE) analysis to reflect the current structural condition. In this study, a FE model is established to simulate a concrete culvert bridge in New South Wales, Australia. That model, however, contains a number of parameter uncertainties that would compromise the accuracy of analytical results. The model is therefore updated with a neural network (NN) optimisation algorithm incorporating Monte Carlo (MC) simulation to minimise the uncertainties in parameters. The modal frequency and strain responses produced by the updated FE model are compared with the frequency and strain values on-site measured by sensors. The outcome indicates that the NN model updating incorporating MC simulation is a feasible and robust optimisation method for updating numerical models so as to minimise the difference between numerical models and their real-world counterparts.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.

MPI-OpenMP Hybrid Parallelization for Multibody Peridynamic Simulations (다물체 페리다이나믹 해석을 위한 MPI-OpenMP 혼합 병렬화)

  • Lee, Seungwoo;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2020
  • In this study, we develop MPI-OpenMP hybrid parallelization for multibody peridynamic simulations. Peridynamics is suitable for analyzing complicated dynamic fractures and various discontinuities. However, compared with a conventional finite element method, nonlocal interactions in peridynamics cost more time and memory. In multibody peridynamic analysis, the costs increase due to the additional interactions that occur when computing the nonlocal contact and ghost interlayer models between adjacent bodies. The costs become excessive when further refinement and smaller time steps are required in cases of high-velocity impact fracturing or similar instances. Thus, high computational efficiency and performance can be achieved by parallelization and optimization of multibody peridynamic simulations. The analytical code is developed using an Intel Fortran MPI compiler and OpenMP in NURION of the KISTI HPC center and parallelized through MPI-OpenMP hybrid parallelization. Further parallelization is conducted by hybridizing with OpenMP threads in each MPI process. We also try to minimize communication operations by model-based decomposition of MPI processes. The numerical results for the impact fracturing of multiple bodies show that the computing performance improves significantly with MPI-OpenMP hybrid parallelization.

An Effective Method for Comparing Control Flow Graphs through Edge Extension (에지 확장을 통한 제어 흐름 그래프의 효과적인 비교 방법)

  • Lim, Hyun-Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.8
    • /
    • pp.317-326
    • /
    • 2013
  • In this paper, we present an effective method for comparing control flow graphs which represent static structures of binary programs. To compare control flow graphs, we measure similarities by comparing instructions and syntactic information contained in basic blocks. In addition, we also consider similarities of edges, which represent control flows between basic blocks, by edge extension. Based on the comparison results of basic blocks and edges, we match most similar basic blocks in two control flow graphs, and then calculate the similarity between control flow graphs. We evaluate the proposed edge extension method in real world Java programs with respect to structural similarities of their control flow graphs. To compare the performance of the proposed method, we also performed experiments with a previous structural comparison for control flow graphs. From the experimental results, the proposed method is evaluated to have enough distinction ability between control flow graphs which have different structural characteristics. Although the method takes more time than previous method, it is evaluated to be more resilient than previous method in comparing control flow graphs which have similar structural characteristics. Control flow graph can be effectively used in program analysis and understanding, and the proposed method is expected to be applied to various areas, such as code optimization, detection of similar code, and detection of code plagiarism.