• Title/Summary/Keyword: Structural members

Search Result 2,390, Processing Time 0.028 seconds

Seismic Damage Assessment and Nonlinear Structural Identification Using Measured Seismic Responses (실측 지진응답을 이용한 지진손상도 평가 및 소성모형 추정)

  • 이형진;김남식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.7-15
    • /
    • 2002
  • In this paper, the nonlinear parameter estimation method using the estimated hysteresis of each structural members was studied for the purpose of efficient seismic damage prediction and estimation of MDOF nonlinear structural model in the shaking table test. The hysteresis of each structural members can be obtained by the conversion of measured response histories into relative motions of each structural members and member forces. These hysteresis can be used to evaluate various kinds of damage indices of each structural members. The MDOF nonlinear structural model for further analysis(re-analysis) can be easily reconstructed using estimated nonlinear structural parameters of each structural members. To demonstrate the proposed techniques, several numerical and experimental example analyses are carried out. The results indicate that the proposed method can be very useful to assess local seismic damages of structures.

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur;Sami Arsoy
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.133-154
    • /
    • 2023
  • Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.

Patterns of Resistographs for Evaluating Deteriorated Structural Wood Members

  • LEE, Jun Jae;KIM, Kwang Chul;BAE, Mun Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.45-54
    • /
    • 2003
  • The density and strength of wood is affected by degradations and defects, such as voids and knots. Old wooden structures such as traditional cultural properties have been deteriorated by these types of defects. They were evaluated by a visual observation that is difficult to evaluate the inner deterioration in structures. In this study, three nondestructive testing techniques were investigated to detect the wooden structural members. Ultrasonic stress wave tests, drilling resistance tests and visual inspections were used to examine the structural wood members. Patterns of Resistograph using by drilling resistance tests could indicate the features of internal wood such as voids, knots, decay, fungi, and so on. The technique just like as ultrasonic stress wave tests, however, difficult to detect exactly area where small amounts of internal deterioration in logs are. In spite of results of ultrasonic stress wave test, the internal deterioration of wooden structural members could be evaluated by the relationship between ultrasonic stress wave tests and drilling resistance tests.

Cracking in reinforced concrete flexural members - A reliability model

  • Rao, K. Balaji;Rao, T.V.S.R. Appa
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.303-318
    • /
    • 1999
  • Cracking of reinforced concrete flexural members is a highly random phenomenon. In this paper reliability models are presented to determine the probabilities of failure of flexural members against the limit states of first crack and maximum crackwidth. The models proposed take into account the mechanism of cracking. Based on the reliability models discussed, Eqs. (8) and (9) useful in the reliability-based design of flexural members are presented.

An Experimental Study on the Strength Evaluation of existing Structural Members for the Remodelling Construction of Apartments Housing (공동주택의 리모델링을 위한 기존부재의 내력평가 실험연구)

  • Shin, Hyun-Seop;You, Young-Chan;Lim, Byung-Ho;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.29-32
    • /
    • 2006
  • Different from new or reconstruction of an apartment housing, the structural safety in the remodelling construction can be obtained through the repair and strengthening process based on the safety diagnosis and evaluation of structural performance. In this study, structural performance of existing members such as, reinforced concrete slabs, beams and columns are investigated through experimental tests. The structural members were obtained from the existing apartment housing which will be demolished. Test results showed that most specimens have a sufficient structural capacity except for some special case, for example, specimens with severe cracks or concrete loss due to improper casting. This same severe deteriorated or defective structure members originated from bad concrete casting or careless construction process should be repaired and strengthened before an remodelling construction.

  • PDF

Selection of Sensing Members in a High-rise Building Structures using Displacement Participation Factors and Strain Energy Density (변위기여도 및 변형에너지밀도를 활용한 초고층 건물의 센싱 부재 선정)

  • Lee, Hong-Min;Park, Sung-Woo;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2009
  • To rationally secure and maintain the safety and serviceability of a high-rise building, monitoring of structural responses of members is necessary. As such health monitoring of large-scale building structures has received growing attention by researchers in recent years. However, due to a very large number of members complexity of structural responses of a high-rise building structure, practical difficulties exist in selection of structural members to be sensored for assessment of structural safety of a structure. In this paper, a selection technique for active members for safety monitoring of a high-rise building based on displacement participation factor and strain energy density of a member is investigated.

Nonlinear Fracture Analysis of Polymer-Impregnated Concrete Flextural Members (폴리머침투콘크리트 휨부재의 비선형 파괴해석)

  • 변근주;이상민;유동우;김태진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.202-207
    • /
    • 1992
  • The objective of this study is to develop analytical techniques of polymer impregnated concrete flexural members for its proper applications. crystalline methylmethacrylate(MMA) is chosen as a monomer of polymer impregnants, On the basis of members. fracture toughness, fracture energy , critical crack width, and tension softening relations near crack tip are formulated in terms of member depth, initial notch length and the flexural strength of normal concrete. The structural analysis rocedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. It is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

  • PDF

Species Identification of Wooden Structural Members of the Beomeo Temple

  • Eom, Young Geun;Kim, Hwa Sung;Xu, Guang Zhu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.1-7
    • /
    • 2005
  • Tree species of wooden structural members of the Beomeo Temple were identified based on light and scanning electron microscopic characters in the present study. Of 10 structural members, 9 softwoods and 1 hardwood were identified. Among softwood members, 7 belonged to hard pine of the Sylvestris section, and the remaining 2 to hard pine of other than the Sylvestris section and hemlock of the genus Tsuga, respectively. A single hardwood member was identified as white oak of the Prinus section under the subgenus Lepidobalanus.

A Study on Dimension of Structural Members and Calculating Standards of Choikgong (初翼工) Architecture (초익공집 주요 구조부재 단면치수 계획과 산출기준 연구)

  • Kim, Jong-Hoon;Kim, Wang-Jik
    • Journal of architectural history
    • /
    • v.20 no.4
    • /
    • pp.81-94
    • /
    • 2011
  • The purpose of the study, approaching from the aspect of the construction technologies, is to determine the architectural techniques of traditional wood architects in existence, through which the systems and techniques that create the inherent characteristics of Korean architecture are clarified. With understanding traditional construction system and focusing on the fact that built environment results from the consistent standards and technologies of architects, this study inquires into the systematic standard and its formation that present in the process of planning for the overall scale and shape of a building from the study determines dimension of structural members. All the members that constitute the structure are trimmed in advance and assembled in a short period of time on the site. Because of that, the dimensions for trimming and assembling are predetermined according to designated standards in the planning process, therefore consistent standard of computation are in necessity to design shapes and sizes of enormous amount of structural members. This study also shows the standards of measurement employed by architects while planning for structural members of a building, and how the size and range of its composition are developed.

An Evaluation for Vertical Structural Members Compensated during Design Process and These Compensated during Construction of High-rise Building under Seismic Load (설계 및 시공과정에 보정된 고층건물 구조재의 지진하중에 의한 영향 평가)

  • 정은호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.93-102
    • /
    • 1999
  • Increased height of buildings causes severe shortening of vertical structural members due to the accumulated axial load. It not only decreases the serviceability of a structure but also affects significantly the stability of a structure itself due to the secondary stress. The main purpose of estimating the shortening of vertical structural members is to compensate the differential shortening of adjacent members. This paper presents the comparison of stresses between the vertical structural members compensated during construction process and these compensated during design process under the seismic load and represents that the precise compensation of vertical structural members is important.

  • PDF