• Title/Summary/Keyword: Structural lumber

Search Result 52, Processing Time 0.019 seconds

Estimation of Depth Effect on the Bending Strength of Domestic Japanese Larch Structural Lumber using Weibull Weakest Link Theory

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.112-118
    • /
    • 2014
  • The depth effect on bending strength of Japanese larch structural lumber was investigated by using the published data of two different depth lumbers with the same length. Depth effect parameters were derived from Weibull's weakest link theory and compared to the results from other researches. Depth effect on bending strength was significant for No.1 and No.3 lumber, but not insignificant for No.2 lumber. Calculated value of the depth effect adjustment factors was 0.21, 0.11 and 0.22 by lumber grade, respectively. These results were similar to those results from previous researches and supported depth effect on bending strength of lumber. An apparent depth adjustment factor has been proposed to 0.2 in the literatures. Based on this study, depth adjustment factor was considered to 0.2 as a conservative optimum design value that should be incorporated in domestic building code (KBC) for structural lumber.

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

Feasibility of Domestic Yellow Poplar (Liriodendron tulipifera) Dimension Lumber for Structural Uses (국산 백합나무 구조용 제재목의 이용가능성 평가)

  • Lim, Jin-Ah;Oh, Jung-Kwon;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.470-479
    • /
    • 2010
  • In this study, the visual grading based on the visual characteristics and structural timber bending test were conducted for domestic yellow poplar dimension lumber. Structural performance of domestic yellow poplar dimension lumber was conducted through the evaluation of strength and stiffness. Visual grading rule of yellow poplar dimension lumber did not exist in Korea. Visual grading of yellow poplar dimension lumber was performed according to the NSLB (Northern Softwood Lumber Bureau) standard grading rules including several hardwood dimension lumber. The allowable bending stress was calculated from the results of a visual grading. Compared with NDS (National Design Specification), the yellow poplar dimension lumber showed enough strength for structural uses. In addition, the visual grading was performed according to the KFRI (Korea Forest Research Institute) grading rule to calculated allowable bending stress and to evaluated the feasibility. The yellow poplar was classified into the pine groups by the KFRI criteria regulated by specific gravity. Allowable bending stress based on weibull distribution had became highly than KFRI criteria, as No. 1 (10.0 MPa), No. 2 (7.4 MPa) and No. 3 (4.1 MPa). And the availability of yellow poplar dimension lumber for structural uses had been confirmed. The Modulus of Elasticity (MOE) of domestic yellow poplar dimension lumber had not met the NDS and KFRI criteria. However, for the use of domestic yellow poplar, average values of MOE which obtained through this test were suggested as design value for domestic yellow poplar. Design values were supposed No. 1, 2 (9,000 MPa) and No. 3 (8,000 MPa).

Effective Utilization of Pine Wood for the Manufacturing of High Valued Product(I) -Bending Strength Properties of Laminated lumber Produced from Small Lumber of Pinus densiflora- (소나무재의 효율적 이용을 위한 고부가 가치화 방안(I) -소나무 소경재를 이용한 적층재의 휨 강도 특성-)

  • 홍순일;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.78-83
    • /
    • 1999
  • This study was carried out to investigate the strength and techanical feasibility of laminated lumber from small-diametered Pinus densiflora. Small lumber is currently not used for structural laminated lumber sonstruction, but its properties may of elasticity(MOE). Twenty specimens were compared for each beam from laminae. The results showed that actual beam MOE values exceeded slightly the preducted values. Based on the evaluation and analysis of thirty six Pinus densiflora laminated beams, a bending strength of 673 kgf/$cm^{2}$, and MOE of 98,200 kgf/$cm^{2}$ were obtained. It was suggested that this small lumber may be a candidate for structural laminated beam construction to provide the proper combinations of laminae.

  • PDF

Assignment of the Allowable Design Values for Domestic Softwood Structural Lumber - Structural I-grade - (국산 침엽수구조재의 허용응력설정에 관하여 - 1종 구조재를 중심으로 -)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.11-16
    • /
    • 1996
  • The purpose of this paper is to present a summary of assignment design values according to domestic softwood structural lumber grading rules. Allowable stresses for visually graded lumber were determined from basic data on small. clear specimens. The data corrected for variability such as natural defects and other factors. The procedure adopted by Japan was used for assigning allowable design values. Strength ratios in relation to each defect were taken from ASTM D 245-81. Korean pine(Pinus koraiensis S. et Z.), Korean red pine(Pinus densiflora S. et Z.), Japanese larch(Larix leptolepis Gordon) and Needle fir(Abies holophylla Max) were applied to this study. The calculated allowable stresses were same in Korean pine and Korean red pine. These values were highest in Japanese larch lowest in Needle fir. So, it is desirable for these species to be classified into different catagories Species Group. However, accurate comparison in design values on lumber grading rules among U.S., Japan and Korea was somewhat difficult. And full scale testing will be necessary for accurate determination of the correction factors to setting up design values.

  • PDF

Grading of Domestic Softwood $2{\times}6$ Structural Lumber by Non-destructive Test (비파괴 시험에 의한 국산 침엽수 $2{\times}6"$ 구조부재의 등급구분)

  • Shim, Kug-Bo;Park, Jung-Hwan;Kim, Kwang-Mo
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.49-54
    • /
    • 2006
  • This study was carried out to provide basic data for using domestic structural softwood lumber efficiently and ensuring structural safety of timber structures. The ratios (k-factor) between static and dynamic MOE measured by ultrasonic device for $2{\times}6$ domestic softwood structural lumber are 1.0602 for Korean red pine, 1.0013 for Korean white pine and 1.2320 for Japanese larch. In machine grade using nondestructive method, 76% of Korean red pine was classified into higher than E9 grade, 85% of Korean white pine was sorted into higher than E7 grade and 68% of Japanese larch was classified into higher than E11 grade. Correlation between MOE and MOR by static bending with k-factor from nondestructive method provide a possibility to predict bending strength and allowable stress of domestic softwood structural lumber.

  • PDF

Effects of Finger-joint on Bending Performance of Square Timbers Produced from Domestic Small Diameter Larch Logs (핑거조인트가 국산 낙엽송 소경각재의 휨성능에 미치는 영향)

  • Kim, Yun-Hui;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.301-308
    • /
    • 2014
  • Despite Korea forest take 63.7% of the nation's territory, productivity of domestic structural lumber is low. Studies of domestic small lumbers need to be improved domestic structural timber productivity. In this study, small diameter lumber and finger joint small diameter lumber took bending test to calculate MOE and MOR. MOE of small diameter lumber was $9.3kN/mm^2$ and MOE of finger joint small diameter lumber was $15.4kN/mm^2$. Allowable standard bending stress of small diameter lumber and finger joint small diameter lumber was calculated according to ASTM D 2915. Standard allowable bending stress of small diameter lumber was $12N/mm^2$ and standard allowable bending stress of finger joint small diameter lumber was $11N/mm^2$. Standard allowable bending stress of finger joint small diameter lumber should be considered to design structural beam members.

Optimization of Image Merging Conditions for Lumber Scanning System (제재목 화상입력시스템의 최적 화상병합 조건 구명)

  • Kim, Kwang-Mo;Kim, Byoung-Nam;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.498-506
    • /
    • 2010
  • To use domestic softwood for structural lumber, appropriate grading system for quality, production and distribution condition of domestic lumber should be prepared. Kim et al. developed an automatic image processing system for grading domestic structural lumber (2009a and b). This study was carried out to investigate optimal image merging conditions for improving performance of image input system which is the key technique of image processing system, developed in the previous paper. To merge digital images of Korean larch lumber, choosing the green channel information of obtained image data showed the most accurate merging performance. As a pre-treatment process, applying Y-derivative Sharr's kernel filter could improve the image merging accuracy, but the effect of camera calibration was imperceptible. The optimal size of template image was verified as 30 pixel widths and 150 pixel heights. When applying the above mentioned conditions, the error length of images was 3.1 mm and the processing time was 9.7 seconds in average.

Visual Log Grading and Evaluation of Lamina Yield for Manufacturing Structural Glued Laminated Timber of Pitch Pine (리기다소나무 원목형질 조사 및 구조용집성재 제조 수율 평가)

  • Shim, Sangro;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • Pitch pine (Pinus rigida) has been planted in Korean forests for several decades, primarily for erosion control and use as a fuel supply. To enhance its value, and especially potential use as lamina for structural glued laminated timber (glulam), log quality and lumber yield of pitch pine were evaluated in this study. Trees from pure pitch pine stands with an average diameter at breast height of 32 cm were felled and bucked into 3.6m long 15 cm minimum butt-end diameter logs. Over 80% of the logs were classified to No.2 or No.3 visual grade group. Upon sawing total lumber yield was 55.2%, 39.9% for structural glulam lamina, 7.2% for louver, and 8.1% for miscellaneous use. The final lumber yield for manufacturing structural glulam, after cross-cutting to eliminate knots and finger jointing, was only 15.3%. To enhance this manufacturing yield requires that the rate of knot-included lumber used as lamina be raised. However arrangement of the knot-included lamina, whose mechanical properties need to be accurately evaluated, must be optimized to minimize any reduction to the structural glulam strength. The log quality and lumber yield of pitch pine evaluated in this study are expected to facilitate proper planning for wood product manufacture in the Korean lumbering and glulam industrial field, which has not previously dealt with this species.

A Study on the Structural Safety of the Roof Improvement Project (슬레이트지붕 개량사업 구조안전성 검토)

  • Kang, Kyung-Soo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • The roof improvement project is being carried out under the government's leadership for the sake of national welfare. The project is to replace the asbestos slate roof with a metallic one. In this study, the structural safety of the improved roof was examined and the project guidelines were reviewed. The causes of the roof damage were investigated and the structural analysis was performed for the roof frame subject to wind and snow loads. Metallic roof assemblies have higher strength and load resistance capability than usual slate ones, so the structural safety is governed by the frame. The stresses of the roof frame elements caused by the wind and snow loads were analyzed according to roof frame with various spacings between the rafters and the purlins. Wind load analysis was performed by 24, 28, and 38 m/sec of the basic wind speed. Snow load analysis was carried out by 0.5, 1.0 and $2.0kN/m^2$ of the ground snow load. As the analysis result, the current spacing and the size of the lumber did not satisfy the Korean building code specification. To secure the safety of the roof improvement project, the spacing of the roof frame elements and the size of the lumber should be determined based on the analysis results by structural engineers.