• Title/Summary/Keyword: Structural function

Search Result 3,460, Processing Time 0.031 seconds

Structure-Control Combined Optimal Design of 3-D Truss Structure Considering Intial State and Feedback Gain

  • Park, Jung-Hyen
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.66-72
    • /
    • 2003
  • This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as an example. The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback H$_{\infty}$ controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. For the control objective, we consider two types of performance indices, The first function represents the effect of the initial loads. The second function is the norm of the feedback gain, These objective functions are in conflict with each other but are transformed into one control objective by the weighting method. The structural objectives is treated as the constraint, By introducing the second control objective which considers the magnitude of the feedback gain, we can create a design to model errors.

Spline function solution for the ultimate strength of member structures

  • Zhang, Qi-Lin;Shen, Zu-Yan
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.185-196
    • /
    • 1994
  • In this paper a spline function solution for the ultimate strength of steel members and member structures is derived based on total Lagrangian formulation. The displacements of members along longitudinal and transverse directions are interpolated by one-order B spline functions and three-order hybrid spline functions respectively. Equilibrium equations are established according to the principle of virtual work. All initial imperfections of members and effects of loading, unloading and reloading of material are taken into account. The influence of the instability of members on structural behavior can be included in analyses. Numerical examples show that the method of this paper can satisfactorily analyze the elasto-plastic large deflection problems of planar steel member and member structures.

A Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Lee, Sang-Ju;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.495-500
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity. Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

  • PDF

Optimum Structural Design of a Corrugated Bulkhead by using Flexible Tolerance Method (FTM을 이용한 파형격벽의 최적구조설계)

  • S.J.,Yim;G.H.,Kim;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.45-52
    • /
    • 1987
  • In this paper, merits and demerits of Nelder and Mead Penalty Function Method(SUMTNM) and Flexible Tolerance Method(FTM) are investigated from the standpoint of generality, accuracy and efficiency. SUMTNM is combined with Nelder and Method and SUMT, but FTM improves the values of the objective function by using information provided by feasible points as well as certain nonfeasible points termed near-feasible points. Therefore, FTM uses more information than SUMTNM for minimizing object function. The structural analysis of a vertically corrugated bulkhead is performed by collapse mechanism and plate buckling analysis. Based on the results of this analysis, minimum structural weight design of a corrugated bulkhead by use of above two optimization techniques is carried out by investigating the effects of sizes of bulkhead on the structural weight.

  • PDF

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

On-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures

  • Lei, Ying;Wang, Longfei;Lu, Lanxin;Xia, Dandan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.789-797
    • /
    • 2017
  • Recently, some integrated structural identification/damage detection and reliability evaluation of structures with uncertainties have been proposed. However, these techniques are applicable for off-line synthesis of structural identification and reliability evaluation. In this paper, based on the recursive formulation of the extended Kalman filter, an on-line integration of structural identification/damage detection and reliability evaluation of stochastic building structures is investigated. Structural limit state is expanded by the Taylor series in terms of uncertain variables to obtain the probability density function (PDF). Both structural component reliability with only one limit state function and system reliability with multi-limit state functions are studied. Then, it is extended to adopt the recent extended Kalman filter with unknown input (EKF-UI) proposed by the authors for on-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures subject to unknown excitations. Numerical examples are used to demonstrate the proposed method. The evaluated results of structural component reliability and structural system reliability are compared with those by the Monte Carlo simulation to validate the performances of the proposed method.

Structural Equation Modeling of Factors Contributing to Activities of Daily Living in Children With Cerebral Palsy (뇌성마비 아동의 일상생활동작에 영향을 미치는 요인에 관한 구조방정식 모형 검증)

  • Park, Eun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.206-217
    • /
    • 2009
  • The purpose of this study was to investigate the cause-effect relationship between motor impairments, hand function, gross motor function and activities of daily living (ADL) in children with cerebral palsy through the analysis of structural equation modeling. For this, 105 children with cerebral palsy (between 6 and 12 years old) were assessed about muscle tone and strength, range of motion, abilities of selective motor control, hand function, gross motor function and ADL. The results of this study were follows: Firstly, there were significant correlations between motor impairments of muscle tone, muscle strength, the abilities of selective motor control and ADL (p < .05); Secondly, a good correlation between the gross motor function, hand function and ADL was found in all children (p < .05); Thirdly, the appropriateness of research model was good. This study focused on exploration of the relationship between the motor impairment, gross motor function, hand function and ADL through structural equation modeling.

A structural model updating method using incomplete power spectral density function and modal data

  • Esfandiari, Akbar;Chaei, Maryam Ghareh;Rofooei, Fayaz R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.39-51
    • /
    • 2018
  • In this study, a frequency domain model updating method is presented using power spectral density (PSD) data. It uses the sensitivity of PSD function with respect to the unknown structural parameters through a decomposed form of transfer function. The stiffness parameters are captured with high accuracy through solving the sensitivity equations utilizing the least square approach. Using numerically noise polluted data, the model updating results of a truss model prove robustness of the method against measurement and mass modelling errors. Results prove the capabilities of the method for parameter estimation using highly noise polluted data of low ranges of excitation frequency.

Assumed strain finite strip method using the non-periodic B-spline

  • Hong, Hyun-Seok;Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • An assumed strain finite strip method(FSM) using the non-periodic B-spline for a shell is presented. In the present method, the shape function based on the non-periodic B-splines satisfies the Kronecker delta properties at the boundaries and allows to introduce interior supports in much the same way as in a conventional finite element formulation. In the formulation for a shell, the geometry of the shell is defined by non-periodic B3-splines without any tangential vectors at the ends and the penalty function method is used to incorporate the drilling degrees of freedom. In this study, new assumed strain fields using the non-periodic B-spline function are proposed to overcome the locking problems. The strip formulated in this way does not posses any spurious zero energy modes. The versatility and accuracy of the new approach are demonstrated through a series of numerical examples.

A Frequency Response Function-Based Damage Identification Method for Cylindrical Shell Structures

  • Lee, U-Sik;Jeong, Won-Hee;Cho, Joo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2114-2124
    • /
    • 2004
  • In this paper, a structural damage identification method (SDIM) is developed for cylindrical shells and the numerically simulated damage identification tests are conducted to study the feasibility of the proposed SDIM. The SDIM is derived from the frequency response function solved from the structural dynamic equations of damaged cylindrical shells. A damage distribution function is used to represent the distribution and magnitudes of the local damages within a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in the damaged state. By virtue of utilizing FRF-data, one is able to make the inverse problem of damage identification well-posed by choosing as many sets of excitation frequency and FRF measurement point as needed to obtain a sufficient number of equations.