• Title/Summary/Keyword: Structural equation

Search Result 6,199, Processing Time 0.031 seconds

Consideration of the Structural Strength of High Speed Aluminum Planning Boat Plate Member (고속 경구조선 알루미늄 판부재의 구조강도 고찰)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • In order to establish a design guide for the bottom plate structure of a 4.3 ton aluminum planning boat, the feasibilities of bottom plate scantling of the ship are investigated based on the results of structural strength analysis and a simple equation and evaluation system are developed for initial structural design purposes. This study consists of 5 steps: First, the background, necessity, and purpose of this study are explained briefly, Second, the principal dimensions of this ship, the position of the considered bottom plate members and material characteristics are introduced. Third, the equivalent design pressure concept is introduced and evaluated based on experience and experimental data. Fourth, the strength of bottom plate members are examined using elasto-plastic nonlinear structural analysis, and response levels and several boundary conditions are reviewed based on the analysis results. Finally, in order to suggest design guides in respect to the ship's structural design, a simple design equation and evaluation system for bottom plate members are suggested for boats in the 4.3 ton aluminumboat range through the introduction of safety factorsbased on the ultimate design pressure concept.

A Comparison Analysis among Structural Equation Modeling (AMOS, LISREL and PLS) Using the Same Data (동일 데이터를 이용한 구조방정식 툴 간의 비교분석)

  • Nam, Soo-tai;Kim, Do-goan;Jin, Chan-yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.978-984
    • /
    • 2018
  • Structural equation modeling is pointing to statistical procedures that simultaneously perform path analysis and confirmatory factor analysis. Today, this statistical procedure is an essential tool for researchers in the social sciences. There are as AMOS, LISREL and PLS representative tools that can perform structural equation modeling analysis. AMOS provides a convenient graphical user interface for beginners to use. PLS has the advantage of not having a constraint on normal distribution as well as a graphical user interface. Therefore, we compared and analyzed the three most commonly used tools (applications) in social sciences. Based on structural equation modeling, confirmatory factor analysis was performed using the IBM AMOS Ver. 23, the LISREL 8.70 and the SmartPLS 2.0. The comparative results show that LISREL has the highest explanatory power of dependent variables than other analytical tools. The path coefficients and T-values presented by the analysis results showed similar results for all three analysis tools. This study suggests practical and theoretical implications based on the results.

Optimum Welding Position between Shell and Cylinder based on SEA (SEA 를 이용한 쉘과 실린더의 최적 용접 조건)

  • Ahn, Byoung-Ha;Lee, Jang-Woo;Jeon, Simon;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.258-264
    • /
    • 2012
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represents characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

The Finite Element Formulation and Its Classification of Dynamic Thermoelastic Problems of Solids (구조동역학-열탄성학 연성문제의 유한요소 정식화 및 분류)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.37-49
    • /
    • 2000
  • This paper is for the first essential study on the development of unified finite element formulations for solving problems related to the dynamics/thermoelastics behavior of solids. In the first part of formulations, the finite element method is based on the introduction of a new quantity defined as heat displacement, which allows the heat conduction equations to be written in a form equivalent to the equation of motion, and the equations of coupled thermoelasticity to be written in a unified form. The equations obtained are used to express a variational formulation which, together with the concept of generalized coordinates, yields a set of differential equations with the time as an independent variable. Using the Laplace transform, the resulting finite element equations are described in the transform domain. In the second, the Laplace transform is applied to both the equation of heat conduction derived in the first part and the equations of motions and their corresponding boundary conditions, which is referred to the transformed equation. Selections of interpolation functions dependent on only the space variable and an application of the weighted residual method to the coupled equation result in the necessary finite element matrices in the transformed domain. Finally, to prove the validity of two approaches, a comparison with one finite element equation and the other is made term by term.

  • PDF

The Instability Behavior of Shallow Sinusoidal Arches(1) : Classification of Static Buckling According to Shape Characteristics (얕은 정현형 아치의 불안정 거동에 관한 연구(1) : 형상특성에 따른 정적좌굴의 분류)

  • 김승덕;박지윤;권택진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.407-415
    • /
    • 1999
  • There are two kinds of instability phenomena for shell-type structures which are snap-through and bifurcation buckling. These are very sensitive according to the shape characteristics including rise-span ratio and especially shape initial imperfection. In this study, the equilibrium path of shallow sinusoidal arches supported by hinges at both ends is investigated to grasp the instability behavior of shell-type structures with initial imperfection. The Galerkin method is used to get the nonlinear discretized equation of governing differential equation considering geometric nonlinearity of arches and the perturbation method is also used to transform the nonlinear equation to incremental form.

  • PDF

Effects of Prestressing Force on the Natural Frequency of a PSC Beam (PSC 보의 고유진동수에 미치는 긴장력의 영향)

  • Koo Min-Se;Lee Ho-Kyung;Lee Ju-Beom
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.408-415
    • /
    • 2005
  • Existing results of some related experiments report that variation in the magnitude of prestressing force may leads to a change of dynamic properties of a PSC girder system. Since a usual dynamic equilibrium equation doesn't explain these phenomena, a modified dynamic equilibrium equation is derived in this paper by considering prestressing force as an internal energy of the system. The derived equation is applied to a modified beam element model is proposed. The proposed model validated by comparing the natural frequencies computed by the model with those from an existing experiment result.

  • PDF

Finite Element Solution of Ordinary Differential Equation by the Discontinuous Galerkin Method (불연속 갤러킨 방법에 의한 상미분방정식의 유한요소해석)

  • 김지경
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.83-88
    • /
    • 1993
  • A time-discontinuous Galerkin method based upon using a finite element formulation in time has evolved. This method, working from the differential equation viewpoint, is different from those which have been generally used. They admit discontinuities with respect to the time variable at each time step. In particular, the elements can be chosen arbitrarily at each time step with no connection with the elements corresponding to the previous step. Interpolation functions and weighting functions are taken to be discontinuous across inter-element boundaries. These methods lead to a unconditional stable higher-order accurate ordinary differential equation solver.

  • PDF

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

Numerical Analysis on Buckling of Longitudinal Bar in Reinforced Concrete Columns (철근콘크리트 기둥의 구조좌굴에 관한 수치해석)

  • 이리형;박재형;이용택
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 1995
  • The study summarized in this paper is concerned with the buckling of longitudinal bars in reinforced concrete columns with numerical analysis method. The objectives of this study are (1) to investigate the stress transfer mechanism between concrete and reinforcement and (2) to propose a modeling equation. The results give an acceptable agreement between the proposed modeling equation and published computer packages as follows; (1) the proposed equation is a possible of strain softening of concrete and buckling of reinforcement. (2) the buckling of longitudinal bar is mainly influenced by spacing of hoop and location of the bar

  • PDF

Numerical Analysis on the Buckling of a Longitudinal Bar in Reinforced Concrete Members (철근 콘크리트 부재의 주근좌굴에 관한 수치해석)

  • 이용택;박재형;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.87-94
    • /
    • 1993
  • The study summarized in this paper is concerned with the buckling of a longitudinal bar in reinforced concrete members by numerical analysis method. The objectives of this study are to investigate the stress transfer mechanism between concrete and reinforcment and to propose a modeling equation. The result gives an acceptable agreement between the proposed modeling equation and the computer package as follows: (1) the proposed equation is a possible prediction of the strain softening of concrete and reinforcement buckling. (2) the buckling of longitudinal bars is mainly influenced by the spacing of hoops and the location of the bar.

  • PDF