• Title/Summary/Keyword: Structural elements

Search Result 2,863, Processing Time 0.027 seconds

Behavior of high-strength fiber reinforced concrete plates under in-plane and transverse loads

  • Ramadoss, P.;Nagamani, K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.371-382
    • /
    • 2009
  • The concrete plates are most widely used structural elements in the hulls of floating concrete structures such as concrete barges and pontoons, bridge decks, basement floors and liquid storage tanks. The study on the behavior of high-strength fiber reinforced concrete (HSFRC) plates was carried out to evaluate the performance of plates under in-plane and transverse loads. The plates were tested in simply supported along all the four edges and subjected to in-plane and traverse loads. In this experimental program, twenty four 150 mm diameter cylinders and twelve plate elements of size $600{\times}600{\times}30$ mm were prepared and tested. Water-to-cementitious materials ratios of 0.3 and 0.4 with 10% and 15% silica fume replacements were used in the concrete mixes. The fiber volume fractions, $V_f$ = 0%, 1% and 1.5% with an aspect ratio of 80 were used in this study. The HSFRC mixes had the concrete compressive strengths in the range of 52.5 to 70 MPa, flexural strengths ranging from 6.21 to 11.08 MPa and static modulus of elasticity ranging from 29.68 to 36.79 GPa. In this study, the behavior of HSFRC plate elements subjected to combined uniaxial in-plane and transverse loads was investigated.

Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames

  • Izadpanaha, Mehdi;Habibi, AliReza
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.169-188
    • /
    • 2015
  • There are two types of nonlinear analysis methods for building frameworks depending on the method of modeling the plastification of members including lumped plasticity and distributed plasticity. The lumped plasticity method assumes that plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements. The distributed plasticity method discretizes the structural members into many line segments, and further subdivides the cross-section of each segment into a number of finite elements. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread form the joint interface resulting in a curvature distribution. The program IDARC includes a spread plasticity formulation to capture the variation of the section flexibility, and combine them to determine the element stiffness matrix. In this formulation, the flexibility distribution in the structural elements is assumed to be the linear. The main objective of this study is to evaluate the accuracy of linear flexibility distribution assumed in the spread inelasticity model. For this purpose, nonlinear analysis of two reinforced concrete frames is carried out and the linear flexibility models used in the elements are compared with the real ones. It is shown that the linear flexibility distribution is incorrect assumption in cases of significant gravity load effects and can be lead to incorrect nonlinear responses in some situations.

Development of finite 'crack' element (균열 유한 요소의 개발)

  • 조영삼;전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.381-388
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor K/sub I/ is demonstrated and the crack propagation in a plate is simulated.

  • PDF

Non-linear Dynamic Analysis of Cable Structures Using Elastic Catenary (탄성 현수선 요소를 이용한 케이블 구조물의 비선형 동적해석)

  • Hwang Jin-Hong;Lee Sang-Ju;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.473-480
    • /
    • 2005
  • Geometrical non-linearity due to the flexibility of cables must be considered efficiently in the dynamic analysis of cable structures. In this paper, formulation of tangent stiffness matrix of elastic catenary cable is derived by using relative nodal displacements, self-weight and unstressed cable length. Free vibration analysis of simply supported cable using elastic catenary cable elements is conducted and compared with that using truss elements. The result shows that elastic catenary cable elements are more compatible than truss elements in the case of analysis of cable structures. Furthermore, the characteristic of dynamic behaviors of cable structures by temporary unstability phenomenon is confirmed.

  • PDF

Wave Propagation Analysis of a Strip Foundation in Layered Soils using Infinite Elements (무한요소를 사용한 층상지반에 놓인 스트립기초의 진동전파해석)

  • 윤정방;김두기;김유진;박종찬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.202-209
    • /
    • 1996
  • In this paper, two dimensional vertical and comer infinite elements which can include multiple wave components to model underlying half space are developed. These elements are natural and economical to model underlying stiff half space or rock. To verify the behavior of these infinite elements, vertical, horizontal, and rocking compliances of a rigid strip foundation on a viscoelastic soil profile are analyzed and compared with those of Tzong and Penzien who used the boundary solution method. Good agreements are noticed between the two methods. The influence of material properties like Poisson's ratio, material damping, and stiffness ratio of layers as well as the influence of geometrical properties such as layer thicknesses and depth of foundation embedment are studied. Example analysis is carried out for the shaking table which is located in KIMM(Korea Institute of Machinery and Materials), and the vertical and horizontal displacements of the analysis are compared with the measured, and show good results and demonstrate the efficiency of the proposed method.

  • PDF

Development of a Durability Estimation System for Horizontal Machining Centers (수평형 머시닝센터의 내구성 예측 시스템 개발)

  • 김기상;김석일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.22-32
    • /
    • 2001
  • One of the important considerations in designing a machine tool is the durability. In this study, a durability estimation system for horizontal machining centers is developed to evaluate the effects of structural specification and driving condi-tions on the durability. All loads such as weights, inertial forces, cutting force and so on, are automatically transferred from the upper elements to the lower elements by the force flows which can be derived from the structural code of horizontal machining centers. And the external loads applied to the motion elements such as bearings, LM guides, ball screws and ao on, are determined by the equilibrium conditions of force and moment. Especially, the durability of horizontal machining centers is estimated based on the lifes of motion elements operating under the desired driving conditions.

  • PDF

Approximate Wave Functions of Dynamic Infinite Elements for Multi-layered Halfspaces

  • Kim, J.M.;Yun, C.B.;Yang, S.C.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.193-198
    • /
    • 1993
  • This paper presents a systematic procedure to obtain shape functions of the infinite elements for soil-structure interaction analysis. The function spaces are derived from the analytical solutions and appropriate assumptions based on physical interpretation. The function spaces are complete for the surface wave components, but approximate for the body wave components. Three different infinite elements are developed by using the wave functions of the derived function spaces. Numerical example analysis is presented for demonstrating the effectiveness of the present infinite elements.

  • PDF

Development of a Durability Estimation System for Horizontal Machining Centers (수평형 머시닝센터의 내구성 예측 시스템 개발)

  • 김기상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.3-10
    • /
    • 1999
  • One of the important considerations in designing a machine tool is the durability. In this study, a durability estimation systems for horizontal machining centers is developed to evaluate the effects of structural specification and driving conditions on the durability. All loads such as weights, inertia forces, cutting force and so on, are automatically transferred from the upper elements to the lower elements by the force flows which can be derived from the structural code of horizontal machining centers. And the external loads applied to the motion elements such as bearings, LM guides, ball screws and so on, are determined by the equilibrium conditions of force and moment. Especially, the durability of horizontal machining center is estimated based on the lifes of motion elements operating under the desired driving conditions.

  • PDF

Development of a Durability Estimation System for Turning Centers (터닝센터의 내구성 예측 시스템 개발)

  • 김기상;김석일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.460-465
    • /
    • 2000
  • In this study, a durability estimation system of turning centers is developed to systematically evaluate the effects of structural specification and testing condition on the durability. All loads such as weights, inertia forces, cutting force and so on, are automatically transferred from the upper elements to the lower elements by the force flow which can be derived from the structural code of turning center. And the external loads applying to the moving and rolling elements are determined by using the equilibrium conditions of force and moment. Especially, the durability of turning center is estimated based on the lifes of moving and rolling elements under the required testing condition.

  • PDF

Linear Buckling Analysis of Thin-walled Structures by Flat Shell Elements with Drilling D.O.F. (회전자유도를 갖는 평면쉘요소에 의한 박판구조물의 선형 좌굴해석)

  • 최창근;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.258-265
    • /
    • 1998
  • Application of the flat shell element with drilling D.O.F to linear buckling analysis of thin-walled structures is presented in this paper. The shell element has been developed basically by combining a membrane element with drilling D.O.F. and Mindlin plate bending element. Thus, the shell element possesses six degrees-of-freedom per node which, in addition to improvement of the element behavior, permits an easy connection to other six degrees-of-freedom per node elements(CLS, Choi and Lee, 1995). Accordingly, structures like folded plate and stiffened shell structure, for which it is hard to find the analytical solutions, can be analyzed using these developed flat shell elements. In this paper, linear buckling analysis of thin-walled structures like folded plate structures using the shell elements(CLS) with drilling D.O.F. to be formulated and then fulfilled. Subsequently, buckling modes and the critical loads can be output. Finally. finite element solutions for linear buckling analysis of folded plate structures are compared with available analytic solutions and other researcher's results.

  • PDF