• 제목/요약/키워드: Structural distortion

검색결과 251건 처리시간 0.019초

Structural Distortions and Electrical Properties of Magnetoelectric Layered Perovskites: $Bi_4Ti_3O_{}12.nBiFeO_3$(n=1&2)

  • Ko, Taegyung;Bang, Gyusuk;Shin, Jungmuk
    • The Korean Journal of Ceramics
    • /
    • 제4권2호
    • /
    • pp.83-89
    • /
    • 1998
  • The structure refinements and the electrical and magnetoelectric measurements were performed for BIT.1BF and BIT.2BT. The tetragonal distortion of the ab plane became lessened with the addition of $4BiFeO_3 into Bi_4Ti_3O_{12}$ significantly. However, the tilting of the outer-oxygen octahedra of the perovskite unit and the elongatin of the $(Bi_2O_2)^{2+}$ layers became more pronounced. For the both phases, the bariations of dielectric properties and electrical conductivities at high temperatures showed that the ferroelectic I-rerroelectric II phase transition existed before reaching the Curie temperature. The electrical conductivity became higher with the increase of $Fe^{3+}$ ions, implying that the electron transfer increased correspondingly. The magnetoelectric effect was observed linear up to ~8 kOe, which was stronger in BIT.1BF than BIT.2BF. This behavior indicates that the distortion of the ab plane may affect the induced polarization as well as magnetic moment.

  • PDF

소성유동선도를 강조한 소성가공 시뮬레이션과 그 적용 사례 (Metal Forming Simulation with Emphasis on Metal Flow Lines and its Applications)

  • 엄재근;정승원;전만수
    • 소성∙가공
    • /
    • 제22권6호
    • /
    • pp.323-327
    • /
    • 2013
  • In this paper, the flow lines as a function of product design as well as the forging process design are explored using typical application examples. The prediction of flow lines using metal forming simulation technology is introduced along with their characterization. Experimental studies have shown that the metal flow lines have a strong influence on the structural rigidity of the final product. In this study we present several typical applications. One example is the case of severely cut metal flow lines during machining, especially in the region where periodic contacting forces are applied. Another example is the case of abnormal distortion of flow lines which can cause too much elongation or hot shortness due to viscous heating in the region of distortion. A third example is the case of a macrosegregation region which needs to be controlled so it is not adjacent to the region where the force is applied in the use of the final component. An example of weight reduction for an automobile component with improved flow lines is also introduced. These typical applications can provide process engineers with the insight in designing automobile or mechanical components as well as in designing the manufacturing methods to produce various parts.

고유변형도 기반 열변형부의 후속 하중에 기인한 용접 후 변형 해석 (Analysis of Post Weld Deformation at HAZ by External Forces Based on Inherent Strain)

  • 김종태;하윤석;장창두
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.220-227
    • /
    • 2006
  • In case of welding, the inherent strains are generated, because a structure experiences the plastic yielding. The inherent strain is defined as the irrecoverable strain after removing structural restraints and loading. For the analysis method of welding distortion, equivalent loading method based on inherent strain is in general use due to its efficiency and effectiveness. However, it is generally difficult to know the final strain of the welded structure if additional loadings were applied after welding. for this reason, this study introduced the concept of the hardening and added the hardening term to the equivalent loading method based on inherent strain. Therefore, the purposes of this study are to develop the inherent strain formula considering the hardening effect and to calculate residual Stresses Using Proposed inherent Strain. Also, this Study Verified the availability Of proposed inherent strain method by loading-unloading experiment on welded plate.

PST (20/80)/ PST(80/20) 이종층 박막의 유전특성 (Dielectric properties of PST (20/80)/ PST(80/20) heterolayered thin films)

  • 김경태;김관하;우종창;김종규;강찬민;김창일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.115-116
    • /
    • 2006
  • Dielectric PST (20/80) / PST (80/20) heterolayered thin films structures were created by a consequent deposition of the PST (20/80) and PST (80/20) thin films on the $Pt/Ti/SiO_2/Si$ substrate using alkoxide-based sol-gel method. Both structural and dielectric properties of heterolayered PST thin films were investigated for the tunable microwave device applications. As the number of coating increases, the lattice distortion decreased. It can be assumed that the lower PST layer affects a nucleation site or a seeding layer for the formation of the upper PST layer. The dielectric constant, dielectric loss and tunability of the PST-6 heterolayered structure measured at 100 kHz were 399, 0.022 and 57.9%, respectively. All these parameters showed an increase with increasing number of coatings due to the decrease in lattice distortion.

  • PDF

양자화 제약 집합에 투영을 이용한 벡터 양자화된 영상의 후처리 (Post-processing of vector quantized images using the projection onto quantization constraint set)

  • 김동식;박섭형;이종석
    • 한국통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.662-674
    • /
    • 1997
  • In order to post process the vector-quantized images employing the theory of projections onto convex sets or the constrained minimization technique, the the projector onto QCS(quantization constraint set) as well as the filter that smoothes the lock boundaries should be investigated theoretically. The basic idea behind the projection onto QCS is to prevent the processed data from diverging from the original quantization region in order to reduce the blurring artifacts caused by a filtering operation. However, since the Voronoi regions in order to reduce the blurring artifacts caused by a filtering operation. However, since the Voronoi regions in the vector quantization are arbitrarilly shaped unless the vector quantization has a structural code book, the implementation of the projection onto QCS is very complicate. This paper mathematically analyzes the projection onto QCS from the viewpoit of minimizing the mean square error. Through the analysis, it has been revealed that the projection onto a subset of the QCS yields lower distortion than the projection onto QCS does. Searching for an optimal constraint set is not easy and the operation of the projector is complicate, since the shape of optimal constraint set is dependent on the statistical characteristics between the filtered and original images. Therefore, we proposed a hyper-cube as a constraint set that enables a simple projection. It sill be also shown that a proper filtering technique followed by the projection onto the hyper-cube can reduce the quantization distortion by theory and experiment.

  • PDF

Computational mechanics and optimization-based prediction of grain orientation in anisotropic media using ultrasonic response

  • Kim, Munsung;Moon, Seongin;Kang, To;Kim, Kyongmo;Song, Sung-Jin;Suh, Myungwon;Suhr, Jonghwan
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1846-1857
    • /
    • 2021
  • Ultrasonic nondestructive testing is important for monitoring the structural integrity of dissimilar metal welds (DMWs) in pressure vessels and piping in nuclear power plants. However, there is a low probability of crack detection via inspection of DMWs using ultrasonic waves because the grain structures (grain orientations) of the weld area cause distortion and splitting of ultrasonic beams propagating in anisotropic media. To overcome this issue, the grain orientation should be known, and a precise ultrasonic wave simulation technique in anisotropic media is required to model the distortion and splitting of the waves accurately. In this study, a method for nondestructive prediction of the DMW grain orientations is presented for accurate simulation of ultrasonic wave propagation behavior in the weld area. The ultrasonic wave propagation behavior in anisotropic media is simulated via finite-element analysis when ultrasonic waves propagate in a transversely isotropic material. In addition, a methodology to predict the DMW grain orientation is proposed that employs a simulation technique for ultrasonic wave propagation behavior calculation and an optimization technique. The simulated ultrasonic wave behaviors with the grain orientations predicted via the proposed method demonstrate its usefulness. Moreover, the method can be used to determine the focal law in DMWs.

Single-Delta Bridge Cell MMC의 전압합성을 위한 PWM 반송파 형태에 따른 출력전압의 THD 분석 (THD Analysis of Output Voltage According to PWM Carriers in Single-Delta Bridge Cell MMC)

  • 김재명;정재정
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.526-534
    • /
    • 2022
  • The modular multilevel converter (MMC) has been widely applied to various industrial areas because of its various advantages and structural characteristics. Therefore, many methods for synthesizing the output voltage of MMC have been studied. Among these methods, phase-shifted pulse width modulation (PSPWM) is frequently used in MMC systems because it has diverse merits, such as excellent output qualities even with a small number of cells and uniform power distribution among cells. In this study, the total harmonic distortion (THD) of the output voltage is analyzed in accordance with the number of cells in one arm of a single-delta bridge cell MMC in order to compare PSPWM methods in terms of the THD of the output voltage. The physical characteristics of the triangle and sawtooth carrier waves used for the PSPWM and the mathematical modeling of output voltage are introduced. Then, the obtained results are verified through real-time simulation of a 1 MW single-delta bridge cell MMC system.

Structural Design of a Cathode-ray Tube (CRT) to Improve its Mechanical Shockproof Character

  • Park, Sang-Hu;Kim, Won-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1361-1370
    • /
    • 2006
  • An electronic beam mis-landing phenomenon on the RGB (red/green/blue) -fluorescent surface has been considered as one of serious problems to be solved in cathode-ray tube (CRT), which is generally caused by mechanical shock and vibration. In this work, structural design concepts on the major parts of the CRT, such as a frame, a shadow mask, and a spring, are studied to improve the mechanical shockproof character of a CRT by FEM-analyses and experimental approaches ; a frame is newly designed to have strength employing the double-corner-beads which reduces considerably the distortion of the frame and the shadow mask : the edge-bead of a shadow-mask is redesigned to maintain the wide curved surface of a shadow-mask after mechanical shock : finally, a spring supporting the frame and the shadow-mask is designed to have enough flexibility along drop-direction. As an example, a conventional type of a 15inch CRT was utilized to demonstrate the feasibility and usefulness of this work. Overall, some favorable information on the structural design of the CRT is achieved, and the mechanical shockproof character of a 15-inch CRT is improved in the degree of 3G $(1G=9.81m/s^2)$ as an average-value.

동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법 (The method using dynamic load and static load figures out gust factor of the membrane structure)

  • 왕본강;정재용;유기표;김영문
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.19-24
    • /
    • 2008
  • 본 논문은 풍동실험과 정적하중 실험을 실시하여 강풍 설계시 대공간 구조물의 막구조 동적응답을 확인하여 거스트 계수(gust factor)를 산출해 보고자한다. 이를 위해 섬유재료의 변형률에 따라 하중을 구할 수 있는 막재료 성능실험과 4가지(saddle형, wave형, arch형, point형) 막구조 모형에 따른 횡방향 동적하중과 동적변형응답을 측정할 수 있는 풍동실험, 동적변형응답에 따라 정적하중을 구할 수 있는 정적하중실험을 실시함으로써 거스트 계수(gust factor)를 산출하였다.

  • PDF

Antiferroelectric and antiferrodistortive phase transitions in Ruddlesden-Popper Pb2TiO4 from first-principles

  • Xu, Tao;Shimada, Takahiro;Wang, Jie;Kitamura, Takayuki
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2017
  • This work employed density functional theory to investigate the structural and ferroelectric properties of the Ruddlesden-Popper (RP) phase of lead titanate, $Pb_2TiO_4$, as well as its phase transitions with epitaxial strain. A wealth of novel structural instabilities, which are absent in the host $PbTiO_3$ material, were identified in the RP phase through phonon soft-mode analysis. Our calculations showed that the ground state of $Pb_2TiO_4$ is antiferroelectric, distinct from the dominant ferroelectric phase in the corresponding host material. In addition, applied epitaxial strain was found to play a key role in the interactions among the instabilities. The induction of a sequence of antiferroelectric and antiferrodistortive (AFD) phase transitions by epitaxial strain was demonstrated, in which the ferroic instability and AFD distortion were cooperative rather than competitive, as is the case in the host $PbTiO_3$. The RP phase in conjunction with strain engineering thus represents a new approach to creating ferroic orders and modifying the interplay among structural instabilities in the same constituent materials, enabling us to tailor the functionality of perovskite oxides for novel device applications.