• Title/Summary/Keyword: Structural details

Search Result 645, Processing Time 0.02 seconds

Stress checklist of box girder structure based on spatial grid analysis method

  • Ni, Ying-sheng;Li, Ming;Xu, Dong
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.407-416
    • /
    • 2021
  • The checking stresses in the Chinese codes for reinforced concrete (RC) or prestressed concrete (PC) bridges are aimed for the thin-web beam, which cannot reflect the actual behavior of the modern structures. The incompleteness of the checking stresses could give rise to the deficiency in the design and calculation, and unable to reveal the reason of some common cracks in the structure. In this paper, the complete stress checklist for RC or PC girder bridges are listed, as well as the corresponding crack shapes. The expression of the complete checking stresses is proposed in details. Spatial Grid Model can reflect all the concerned stresses in the structure. Through the comparison of the calculation results from the spatial grid model and the solid model, it is seen that the spatial grid model can reflect load effects such as shear lag effect, thin-wall effect and local effect. The stresses obtained from the spatial grid model could help engineers to have a good understanding of the structural behavior. Meanwhile, the stress checklist provides the information for analyzing and solving the deficiency in the structure.

Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation

  • Kargar, Javad;Arani, Ali Ghorbanpour;Arshid, Ehsan;Rahaghi, Mohsen Irani
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.557-572
    • /
    • 2021
  • The current study considers free vibration of the spherical panel with magnetorheological (MR) fluids core and magneto-electro-elastic face sheets. The panel is subjected to electro-magnetic loads and also is located on an orthotropic visco-Pasternak elastic foundation. To describe the displacement components of the structure, the first-order shear deformation theory (FSDT) is used and the motion equations are extracted by employing Hamilton's principle. To solve the motion differential equations, Navier's method is selected as an exact analytical solution for simply supported boundary conditions. Effect of the most important parameters such as magnetic field intensity, loss factor, multi-physical loads, types of an elastic medium, geometrical properties of the panel, and also different material types for the face sheets on the results is considered and discussed in details. The outcomes of the present work may be used to design more efficient smart structures such as sensors and actuators.

A new index based on short time fourier transform for damage detection in bridge piers

  • Ahmadi, Hamid Reza;Mahdavi, Navideh;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.447-455
    • /
    • 2021
  • Research on damage detection methods in structures began a few decades ago with the introduction of methods based on structural vibration frequencies, which, of course, continues to this day. The value of important structures, on the one hand, and the countless maintenance costs on the other hand, have led researchers to always try to identify more accurate methods to diagnose damage to structures in the early stages. Among these, one of the most important and widely used methods in damage detection is the use of time-frequency representations. By using time-frequency representations, it is possible to process signals simultaneously in the time and frequency domains. In this research, the Short-Time Fourier transform, a known time-frequency function, has been used to process signals and identify the system. Besides, a new damage index has been introduced to identify damages in concrete piers of bridges. The proposed method has relatively simple calculations. To evaluate the method, the finite element model of an existing concrete bridge was created using as-built details. Based on the results, the method identifies the damages with high accuracy.

A Study on the Parametric Design Process for Form Generation to Review Planning Factors of Irregular-Shaped High-rise Buildings (비정형 초고층건물의 계획요소 검토가 가능한 형태생성 파라메트릭 디자인 프로세스에 관한 연구)

  • Im, Ja-Eun;Park, Sang-Min
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.161-168
    • /
    • 2019
  • The use of various digital tools makes freeform modeling possible. At the same time, with the development of structural and construction technologies, Free-Form Architecture are beginning to be implemented realized, as the desired data extraction such as the size and coordinate points of the members is possible. Currently, in many cities around the world, Irregular-Shaped High-rise Buildings, which express the dynamic symbolism, are recognized for their landmark values. In order to realize the Irregular-Shaped High-rise Buildings, it is necessary to understand various fields such as the characteristics of digital tools, digital technique logic, design process, and construction method. In particular, it is important to plan Irregular-Shaped High-rise Buildings so that the various types of efficiency can be reviewed together, while generating understanding and formations from the initial design stage. Therefore, this study uses conceptual and parametric design tools related to form generation in digital architecture to analyze the details, methods, and characteristics of the Irregular-Shaped High-rise Buildings form generation process. In this paper, the parametric design tool is applied to study the various types of design and the process characteristics that can be considered in the initial design stage of the unstructured skyscraper.

Experimental study on the hybrid shear connection using headed studs and steel plates

  • Baek, Jang-Woon;Yang, Hyeon-Keun;Park, Hong-Gun;Eom, Tae-Sung;Hwang, Hyeon-Jong
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • Although several types of rigid shear connectors have been developed particularly to increase load-carrying capacity, application is limited due to the complicated details of such connection. In this study, push-out tests were performed for specimens with hybrid shear connectors using headed studs and shear plates to identify the effects of each parameter on the structural performance of such shear connection. The test parameters included steel ratios of headed stud to shear plate, connection length, and embedded depth of shear plates. The peak strength and residual strength were estimated using various shear transfer mechanisms such as stud shear, concrete bearing, and shear friction. The hybrid shear connectors using shear plates and headed studs showed large load-carrying capacity and deformation capacity. The peak strength was predicted by the concrete bearing strength of the shear plates. The residual strength was sufficiently predicted by the stud shear strength of headed studs or by shear friction strength of dowel reinforcing bars. Further, the finite element analysis was performed to verify the shear transfer mechanism of the connection with hybrid shear connector.

An experimental investigation of the flexural strengthening of preloaded self-compacted RC beams using CFRP sheets and laminates composites

  • Lattif, Youssef;Hamdy, Osman
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • This paper performs an experimental study on the flexural behavior of preloaded reinforced self-compacted concrete beams strengthened with carbon fiber reinforced polymers CFRP. A group of six preloaded strengthened beams was investigated along with one unstrengthened beam used as a reference beam RB. All beams have the same dimensions and reinforcement details: three beams are strengthened with CFRP laminates against flexural failure and three beams are strengthened with CFRP sheets. For simulating actual conditions, the beams are loaded before strengthening. Then, after strengthening, the beams are tested for flexural strength using 4-point loads where cracked and ultimate load and failure mode, along with load-deflection relation are recorded. To study the different configurations of strengthening, one layer, two layers, and U-wrap formation of laminates and sheets are considered. The results show that strengthing the RC beams using CFRP is an effective method to increase the beam's capacity by 47% up to 153% where deflection is reduced by 5%-80%. So, the beams strengthened with CFRP laminates have higher load capacity and lower ductility in comparison with the beams strengthened with CFRP sheets.

Analyzing behavior of circular concrete-filled steel tube column using improved fuzzy models

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying;Moradi, Zohre;Khadimallah, Mohamed Amine;Safa, Maryam
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.625-637
    • /
    • 2022
  • Axial compression capacity (Pu) is a significant yet complex parameter of concrete-filled steel tube (CFST) columns. This study offers a novel ensemble tool, adaptive neuro-fuzzy inference system (ANFIS) supervised by equilibrium optimization (EO), for accurately predicting this parameter. Moreover, grey wolf optimization (GWO) and Harris hawk optimizer (HHO) are considered as comparative supervisors. The used data is taken from earlier literature provided by finite element analysis. ANFIS is trained by several population sizes of the EO, GWO, and HHO to detect the best configurations. At a glance, the results showed the competency of such ensembles for learning and reproducing the Pu behavior. In details, respective mean absolute errors along with correlation values of 4.1809% and 0.99564, 10.5947% and 0.98006, and 4.8947% and 0.99462 obtained for the EO-ANFIS, GWO-ANFIS, and HHO-ANFIS, respectively, indicated that the proposed EO-ANFIS can analyze and predict the behavior of CFST columns with the highest accuracy. Considering both time and accuracy, the EO provides the most efficient optimization of ANFIS and can be a nice substitute for experimental approaches.

A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement

  • Khaled, Alhaifi;Ahmad Reza, Khorshidvand;Murtadha M., Al-Masoudy;Ehsan, Arshid;Seyed Hossein, Madani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.419-432
    • /
    • 2023
  • This paper studies the effects of porosity distributions on buckling and post-buckling behaviors of a functionally graded saturated porous (FGSP) circular plate. The plate is under the uniformly distributed radial loading and simply supported and clamped boundary conditions. Pores are saturated with compressible fluid (e.g., gases) that cannot escape from the porous solid. Elastic modulus is assumed to vary continuously through the thickness according to three different functions corresponding to three different cases of porosity distributions, including monotonous, symmetric, and asymmetric cases. Governing equations are derived utilizing the classical plate theory and Sanders nonlinear strain-displacement relations, and they are solved numerically via shooting method. Results are verified with the known results in the literature. The obtained results for the monotonous and symmetric cases with the asymmetric case presented in the literature are shown in comparative figures. Effects of the poroelastic material parameters, boundary conditions, and thickness change on the post-buckling behavior of the plate are discussed in details. The results reveal that buckling and post-buckling behaviors of the plate in the monotonous and symmetric cases differ from the asymmetric case, especially in small deflections, that asymmetric distribution of elastic moduli can be the cause.

The Evolution and Structural Characteristics of Scaffolding Constructions in Macao Area from Historical Documents and Visual Materials (문헌 및 도상(圖像) 사료를 통해 본 마카오 '붕식(棚式)' 건축의 연원(淵源)과 구조 형식)

  • Hong, Shu-ying;Han, Dong-Soo
    • Journal of architectural history
    • /
    • v.32 no.1
    • /
    • pp.7-20
    • /
    • 2023
  • The construction method of scaffolding structures is different from Mortise and Tenon and bucket arch structure of traditional large woodwork. It forms an independent construction system-fixing nodes with knots, a large number of diagonal braces are used to fix shelves and the structures mostly contain X-shape and triangular shape details. Simple ones include stalls, sheds, rain sheds, altars, lamp racks etc. But the scaffolding with larger scale and more complicated structure are modeled on archways, theatres and other buildings which are used in commercial and festival activities. At present, Macao, Hong Kong, Guangdong, Sichuan, Shanxi and other places in China have retained the custom of using scaffolding structures in important festival activities, but their uses, techniques and building types are slightly different from place to place. Due to building and demolishing at any time, the construction and service cycle is short. As a result, there are almost no physical objects left. We can only deduce the use and technical characteristics of ancient scaffolding skills through the colorful building styles that have been preserved with folk activities in various parts of China, the craftsmanship handed down from generation to generation by the scaffolding guild and artisans, and the description of cultural and historical materials and the mutual corroboration of visual materials.

DEVELOPMENT AND APPLICATION OF SUBSTRUCTURE NON SUPPORTING FORMWORK FOR TOP-DOWN CONSTRUCTION

  • Mee-Ra Jeong;Hong-Chul Rhim;Doo-Hyun Kang;Kwang-Jun Yoo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.788-793
    • /
    • 2009
  • Constructing substructures by using Top-Down or Downward method needs an efficient formwork system because of difficulties in supporting concrete slabs from the bottom while excavation is in process. Existing underground formwork systems can be classified by three types: graded ground supported type (Slab On Grade, Beam On Grade), suspension type (Non Supporting Top Down Method), and bracket supported type (Bracket Supported R/C Downward). Each method has its own advantages and limits. Application of a specific formwork system for a given construction site is determined by various conditions and affect construction time and cost. This paper presents a newly developed underground non-supporting formwork system, which combines the advantages of a suspension type and a bracket supported type while it overcomes limits of two types. The developed system has a moving formwork which is supported by suspension cables hanging from the bracket placed at the top of pre-installed substructure columns. Then, the moving formwork is repeatedly lowered down for the next floor below to support concrete slab during curing. The details of this bracket and cable supported system have been investigated for the improvement of easiness in construction.

  • PDF