• Title/Summary/Keyword: Structural details

Search Result 645, Processing Time 0.022 seconds

The Practical Application of Modular Construction for Residential Facilities (주거시설로서 모듈러건축 활용화 방안)

  • Kim, Ji-Hyeon;Park, Il-Min
    • Journal of the Korean housing association
    • /
    • v.24 no.3
    • /
    • pp.19-26
    • /
    • 2013
  • The purpose of this research is to provide basic data for the promotion strategy to activate modular construction system as residential facilities, through a study on the architectural planning, institutions and policies and research on connection details, for the use as residential facilities of the modular construction that is not actively supplied for the general residential facilities. As a result, I suggest sample model plan of domestic and foreign case analysis and characteristic of modular construction and practical application of modular construction for Residential Facilities. Owing to many advantages including short construction period structural stability and economic benefits, modular construction is expected to play a role as residential alternative of socially controversial affordable housing and weekend homes, and potential housing shortage after reunification; and to contribute to the development of design automation and industrialized constructions. Though Korea is still lacking development of the system that meets the domestic context, if supported by ongoing researches on the development of construction methods, materials and details, the settlement of appropriate modular residential facilities to suit the national situation will serve a possible alternative solution for many housing and environmental problems.

Experimental investigation of a new steel friction device with link element for seismic strengthening of structures

  • Papadopoulos, Panikos K.;Salonikios, Thomas N.;Dimitrakis, Stergios A.;Papadopoulos, Alkis P.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.487-504
    • /
    • 2013
  • In the present work a new friction device, with a set of single or double rotational friction flanges and a link element, is described and tested. The mechanism may be applied for the strengthening of existing r/c or steel buildings as well as in new constructed buildings. The device has selectable variable behavior in different levels of displacement and an interlock mechanism that is provided by the link element. The link element may be designed to lock at preselected level of displacement, offering in this way an extra safety reserve against strong earthquakes. A summary of the existing literature about other similar mechanisms is initially presented in this paper. The proposed mechanism is presented and described in details. Laboratory experiments are presented in detail and the resulted response that proves the efficiency of the mechanism at selectable levels of strength capacity is discussed. Drawings of the mechanism attached to a r/c frame with connection details are also included. Finally a dynamic analysis of two r/c frames, with and without the proposed mechanism attached, is performed and the resulted response is given. The main conclusion is that the proposed mechanism is a cheap and efficient devise for the improvement of the performance of new or existing framed buildings to seismic loads.

Development of Model Parameter Prediction Equations for Simulating Load-deformation Response of Non-ductile RC Columns (비연성 RC 기둥의 하중-변형 응답 모사를 위한 모델 매개변수 제안)

  • Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Many reinforced concrete (RC) buildings constructed prior to 1980's lack important features guaranteeing ductile response under earthquake excitation. Structural components in such buildings, especially columns, do not satisfy the reinforcement details demanded by current seismic design codes. Columns with deficient reinforcement details may suffer significant damage when subjected to cyclic lateral loads. They can also experience rapid lateral strength degradation induced by shear failure. The objective of this study is to accurately simulate the load-deformation response of RC columns experiencing shear failure. In order to do so, model parameters are calibrated to the load-deformation response of 40 RC column specimens failed in shear. Multivariate stepwise regression analyses are conducted to develop the relationship between the model parameters and physical parameters of RC column specimens. It is shown that the proposed predictive equations successfully estimated the model parameters of RC column specimens with great accuracy. The proposed equations also showed better accuracy than the existing ones.

Experimental Study on Seismic Performance Enhancement of Exposed Column-base Plate Strong-axis Connections for Small-Sized Steel Buildings (소규모 철골조건축물 강축방향 노출형 주각부의 내진성능 향상을 위한 실험 연구)

  • You, Young-Chan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.11-20
    • /
    • 2018
  • The purpose of this study is to investigate the seismic performance of exposed column-base plate strong-axis connections for small-sized steel buildings. Even though the seismic design for small-sized buildings became mandatory since Dec.2017, the arbitrary connection details in steel structure have been applied at the construction site, which is considered to be very insufficient to secure structural safety and stability considering the increased seismic risk. Therefore, a series of experimental test programs had been carried out to develop enhanced connection details in order to ensue the adequate seismic safety of small buildings. The hysteretic behavior of the exposed column-base plate connections commonly used in Korea seem to be very pure poor due to the "Rocking" phenomena between anchor plate and concrete by the residual plastic deformation of anchor bolts. A series of hysteretic tests were conducted to find the solution to overcome the "Rocking" phenomena of the exposed column-base plate connections, finally the stable seismic behavior was obtained by uisng at least 8 anchor bolts with good bonding strength to the protptype specimen.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가)

  • Moon, Hong Bi;Lee, Jeong In;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

An Experimental Study on Seismic Reinforcement of Dry Type Buckling Restrained Braces Laterally Using Buckling Restrained Rings (좌굴방지링으로 횡지지된 건식형 좌굴방지가새 내진보강에 대한 실험적 연구)

  • Lee, Seon Jae;Moon, Hee Suk;Park, Byung Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.165-172
    • /
    • 2022
  • This study is conducted to verify the seismic reinforcement effects of internally inserted buckling-restrained braces supported laterally by buckling-restrained rings for the seismic reinforcement of existing reinforced concrete buildings with non-seismic details. First, to evaluate the performance of KDS, the hysteretic characteristics of buckling-restrained braces are verified, and it is discovered that they satisfy the conformance criteria of the displacement-dependent damping device. Three full-scale, two-story reinforced concrete framework specimens are prepared to verify the seismic reinforcement effects, and the proposed buckling-restrained braces are bolstered with single diagonal and V-shaped braces to be compared with non-reinforced specimens. By performing a comparison with non-reinforced specimens that present intensive shear cracks at the bottom of first-floor columns, it is revealed that the maximum load and energy dissipation of specimens reinforced with the proposed buckling restrained braces, in which the structural damage extends evenly throughout the system, are approximately 4 and 6.2 times higher, respectively, which proves the effectiveness of the proposed seismic reinforcement method.

Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA

  • Eom, Ki Seong;Cheong, Jin Sung;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2019-2029
    • /
    • 2016
  • Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues ($Cys_2His_2$) coordinate to the zinc ion for the structural functions to generate a ${\beta}{\beta}{\alpha}$ fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known $Cys_2His_2$-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

Deep learning-based sensor fault detection using S-Long Short Term Memory Networks

  • Li, Lili;Liu, Gang;Zhang, Liangliang;Li, Qing
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.51-65
    • /
    • 2018
  • A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.