• 제목/요약/키워드: Structural design system

검색결과 3,657건 처리시간 0.033초

MDO기법에 의한 새로운 구조해석 및 설계기법 고찰: 플랩 구동장치의 구조설계에의 적용 (A Study on the New Method for Structural Analysis and Design by MDO(Multidisciplinary Design Optimization) Methodology : Application to Structural Design of Flap Drive System)

  • 권영주;방혜철
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.184-195
    • /
    • 2000
  • MDO (Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a large number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided systems such as Geometric Solid Modeller, Mesh Generator, CAD system and CAE system. And this paper introduces MDO methodology as a new method for structural analysis and design through the application to the structural design of flap drive system. In a MDO methodology application to the structural design of flap drive system, kinetodynamic analysis is done using a simple aerodynamic analysis model for the air flow over the flap surface instead of difficult aerodynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. And the structural buckling analysis for push pull rod is also done to confirm the optimum structural condition (optimum cross section shape of push pull rod).

  • PDF

공작기계 구조물 설계를 위한 통합설계 시스템 개발 (Development of Integrated Design System for Structural Design of Machine Tools)

  • 박면웅;손영태;조성원
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

구조계획에서의 지식기반시스템 도입연구 (An application of a Knowledge-Based System for Structural Planning)

  • 김상철;김홍국;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.137-144
    • /
    • 1994
  • This study describes an application of a knowledge-based system for a part of the development of an integrated structural design system. In preliminary structural design procedure, most structural design operation are performed by structural engineer's manual method. These lack of systematic operation hampers the effective system integration. By introducing expert system to the structural planning stage, structural engineer can automate structural Planning process of an integrated structural design system for complex design. Engineering data management is receiving increasing attention due to complexity of information necessary for performing structural engineering operations. So, in this paper, we describe a methodology for automating conceptual structural design and developing a knowledge-based system integrated with database. At the end, we use an implemented example to support our methodology.

  • PDF

객체 지향 초기 선체 구조 설계 시스템 개발 (Development of an Object-Oriented Initial Hull Structural Design System)

  • 노명일;이규열
    • 한국CDE학회논문집
    • /
    • 제10권4호
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

통합 구조설계 시스템을 위한 설계 객체 모델의 개발과 구현 (Development and Implementation of Design Object Model for Integrated Structural Design System)

  • 천진호;이창호;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.151-158
    • /
    • 2001
  • This paper describes an example of developing an integrated design system, Integrated Structural Design System for Reinforced Concrete Buildings(INDECON). INDECON incorporates a central database and three design modules: a preliminary design module(PDM), a structural analysis module(SAM), and a detailed design module(DDM). The development of INDECON begins with the development of design models including Design Object Model(DOM) which describes design data during the structural design process. The Design Object Model is transformed to Design Table Model(DTM) for the central database, and is specified to be in detail for the three design modules. Then the central database is implemented and managed by relational database management system(RDBMS), and the three design modules are implemented using C++ programming language. The central database in the server computer communicates with the design modules in the client computers using TCP/IP internet protocol. The developing procedure for INDECON in this paper can be applied for developing more comprehensive integrated structural design systems.

  • PDF

양축 면내 압축하중 하의 이중판보강 선박판부재의 설계시스템 구축 (Development of Ship Plate Member Design System Reinforced by Doubler Plate Subjected to Biaxial In-plane Compressive Load)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.294-302
    • /
    • 2016
  • Because of the importance of steel material saving and rational ship structural design due to the rapid increase in steel prices, a ship structural design system was developed for plate members reinforced by doubler plates subjected to biaxial in-plane compressive loads. This paper mainly emphasizes the design system improvement and upgrade according to the change in the in-plane loading condition of the doubler plate from the single load discussed in a previous paper to the biaxial in-plane compressive load discussed in this paper. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the second stage of preliminary steps of doubler design system development, design formulas subjected to these biaxial loads used in the doubler plate design system were suggested. Based on the introduction of influence coefficients $K_t_c$, $K_t_d$, $K_b_d$ and $K_a_d$ based on the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate reinforced by the doubler plate, respectively, the design formulas for the equivalent plate thickness of the main plate reinforced by the doubler plate were also developed, and a hybrid design system using these formulas was suggested for the doubler plate of a ship structure subjected to a biaxial in-plane compressive load. Using this developed design system for a main plate reinforced by a doubler plate was expected to result in a more rational reinforced doubler plate design considering the efficient reinforcement of ship plate members subjected to these biaxial loads. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a plate member reinforced by a doubler plate.

면내조합하중과 횡압 하의 선박 이중판 설계시스템 구축 (Development of Doubler Plate Design System for Ship Structure Subjected to In-plane Combined Loads and Lateral Pressure)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제33권2호
    • /
    • pp.146-152
    • /
    • 2019
  • A design system was developed for the doubler plate of a ship structure simultaneously subjected to in-plane loads and lateral pressure based on general dimensions and those of a representative ship structure. An equivalent design equation that considers various structural design parameters was derived by introducing the equivalent plate thickness theory, and the design of the doubler plate reinforcement of the ship structure was developed. A hybrid structural design system was established for a doubler plate simultaneously subjected to in-plane loads and lateral pressure consisting of two modules: an optimized design module and a double plate strength & design review module. The practical application of this design system was illustrated to show its usability. It was found that the design safety of the doubler plate was ensured, and this system could be used as an initial design guide to review the double plate reinforcement for a dent or corrosion of the ship plate members. Using the developed design system would make it possible to obtain a more reasonable doubler plate structure that considers the rational reinforcement of plate members of ship structures. In addition, a more reliable structural analysis using a strength evaluation process can be performed to verify the efficiency of the optimum structural design for the doubler plate structure.

철근 콘크리트 구조의 초기 구조설계 시스템 개발 (Development of Preliminary Structural Design System for Reinforced Concrete Structures)

  • 안은경;김남희;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.197-204
    • /
    • 1997
  • The development of computer-integrated design systems that fully support structural design process needs the computerization of structural design at the preliminary design stage. The objective of this paper is to develop a prototype system for preliminary design of reinforced concrete structures. This study focuses on the development of a natural design process oriented GUI(Graphic User Interface) and a representation of an experienced knowledge. The prototype system has been currently implemented using the objected-oriented programming concepts, the program language(i.e.,Visual C++) and the expert shell(i.e., Intelligent Rules Element).

  • PDF

항공기 보조연료탱크 연료시스템 구조 설계 및 해석 (Study on Structural Design and Analysis of Fuel System for Aircraft Auxiliary Fuel Tank)

  • 최원;박현범
    • 항공우주시스템공학회지
    • /
    • 제13권4호
    • /
    • pp.60-65
    • /
    • 2019
  • 본 연구에서 항공기에 적용되는 보조연료탱크의 연료시스템에 대한 구조 설계 및 해석을 수행하였다. 구조 설계 결과에 대한 구조 안전성을 검토하였다. 연료시스템 구조에 적용된 재료는 알루미늄 합금 금속재이다. 구조 해석은 상용 유한 요소 해석 소프트웨어를 활용하여 구조 해석을 수행하였다. 설계 요구 조건은 구조물이 가속도 조건을 만족해야 한다. 따라서 최대 가속도 조건을 고려하여 구조 설계를 수행하였다. 본 연구를 통하여 보조연료탱크의 구조 설계 결과는 안전성을 확보한 것으로 분석되었다.

종방향 면내 압축하중 하의 세장한 선박 이중판 하이브리드 설계시스템 구축 (Development of Slender Doubler Plate Hybrid Design System for Ship Structure Subjected to Longitudinal In-plane Compression)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.20-27
    • /
    • 2014
  • In view of the importance of material reduction and rational structural design due to the rapid increase in oil and steel prices, an optimized structural hybrid design system for the doubler plate of a ship's hull structure was developed. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the first step of the doubler design system development, the design formulas used in doubler design system were introduced. Based on the introduction of influence coefficients $K_{t_c}$ $K_{t_d}$, $K_{b_d}$ and $K_{a_d}$ according to the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate, the design formulas for an equivalent plate thickness were developed, and a hybrid design system using these formulas was suggested for the slender doubler plate of a ship structure subjected to a longitudinal in-plane compression load. By using this developed design system, a more rational doubler plate design can be expected considering the efficient reinforcement of the plate members of ship structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for the doubler plate.