• Title/Summary/Keyword: Structural design optimization

Search Result 1,622, Processing Time 0.03 seconds

Bending and shear stiffness optimization for rigid and braced multi-story steel frames

  • Gantes, C.J.;Vayas, I.;Spiliopoulos, A.;Pouangare, C.C.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.377-392
    • /
    • 2001
  • The response of multi-story building structures to lateral loads, mainly due to earthquake and wind, is investigated for preliminary design purposes. Emphasis is placed on structural systems consisting of rigid and braced steel frames. An attempt to gain a qualitative understanding of the influence of bending and shear stiffness distribution on the deformations of such structures is made. This is achieved by modeling the structure with a stiffness equivalent Timoshenko beam. It is observed that the conventional stiffness distribution, dictated by strength constraints, may not be the best to satisfy deflection criteria. This is particularly the case for slender structural systems with prevailing bending deformations, such as flexible braced frames. This suggests that a new approach to the design of such frames may be appropriate when serviceability governs. A pertinent strategy for preliminary design purposes is proposed.

Development of Automated Optimum Design Program Considering the Design Details (세부설계사항을 고려한 자동최적설계 프로그램 개발)

  • Chang, Chun Ho
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The primary objective of this paper is to develop optimal algorithms of reinforced concrete frame structural systems by the limit state design(CP 1110) and to look into the possibility of detailed design of these structural systems. The structural formulation is derived on the finite element method. The objective of optimization of a reinforced structure for a specified geometry is mainly to determine the optimum cross-sectional dimensions of concrete and the area of the various sizes of the reinforcement required for each member. In addition to the detail s such as the amount of web reinforcement, cutoff points of longitudinal reinforcedments etc. are also considered as design variables. In this study, the method of "Generalized Reduced Gradient, Rounding and with Neighborhood search" and "the Sequential Linear Programming" are employed as an analytical method of nonlinear optimization.

  • PDF

Topology Optimization of Structures using Interval Finite Element Method (간격 유한요소해석을 이용한 구조물의 위상 최적화)

  • Lee, Dong-Kyu;Shin, Soo-Mi;Park, Sung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.389-398
    • /
    • 2006
  • Structural optimization design has been developed with finite element analysis using effective and fast computational technology. Especially topology optimization design has been recently often used since it yields an optimal topology as well as an optimal shape under satisfied constraints. In general in finite element analysis, it is assumed that the structural material properties such as Young's modulus and Poisson's ratio and the variable of applied loading are fixed with obvious values in structure. However practically these values may take uncertainties because of environmental effect or manufactural error of structures. Therefore static or dynamic analysis of the structures may make an error, then finally it may have an influence on qualify of optimal design. In this study, the topology optimization design of structure is carried out using so called the interval finite element method, and the analysis method Is proposed. The results are also validated by comparing with conventional topology optimization results of density distribution method and finite element analysis results. The present method can be used to predict the optimal topology of linear elastostatic structures with respect to structural uncertainty of behavior.

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

Effect of structure configurations and wind characteristics on the design of solar concentrator support structure under dynamic wind action

  • Kaabia, Bassem;Langlois, Sebastien;Maheux, Sebastien
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.41-57
    • /
    • 2018
  • Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar structures. These solar tracking structures need to be optimized to be competitive against other types of energy production. In particular, the selection of the structural parameters needs to be optimized with regards to the dynamic wind response. This study aims to evaluate the effect of the main structural parameters, as selected in the preliminary design phase, on the wind response and then on the weight of the steel support structure. A parametric study has been performed where parameters influencing dynamic wind response are varied. The study is performed using a semi-deterministic time-domain wind analysis method. Unsteady aerodynamic model is applied for the shape of the CPV structure collector at different configurations in conjunction with a consistent mass-spring-damper model with the corresponding degrees of freedom to describe the dynamic response of the system. It is shown that, unlike the static response analysis, the variation of the peak wind response with many structural parameters is highly nonlinear because of the dynamic wind action. A steel structural optimization process reveals that close attention to structural and site wind parameters could lead to optimal design of CPV steel support structure.

A Historical Review of Design Activities and a New-Concept Software System for Structural Optimization (설계활동의 역사적 흐름과 새로운 개념에 의한 구조최적설계 소프트웨어 소개)

  • Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.17-21
    • /
    • 2001
  • Theories for optimal design and optimization algorithms have long been well developed. In industries, however, they are not well practiced. To make them work for industry, a new philosophy is necessary and an integration of various software systems required. A review of the history in the aspect of optimal design software is made and a newly developed code DS-Structure is introduced.

  • PDF

Co-rotational Plane Beam-Dynamic Tip Load를 이용한 Drone Single Arm 최적 설계

  • Park, Seon-Hu;Lee, Sang-Gu;Sin, Sang-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.290-303
    • /
    • 2017
  • This paper aims to build a drone platform based on an optimum design of its single arm. We assumed its single arm as a cantilevered beam with a tip mass. Based on the numerical optimization theory, we conducted validation and optimization of a new design by comparing the results with the similar ones obtained by ANSYS. Finally, this design is reflected in the control simulation, and the requirement of an optimum structural design considering the resonance situation is demonstrated.

  • PDF

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje;Jinkoo Kim
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.249-260
    • /
    • 2023
  • The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

The contribution of column optimization on the embodied energy performance of concrete framed buildings

  • Miller, Dane;Doh, Jeung-Hwan;Ho, Nhat Minh;Peters, Tim
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.564-567
    • /
    • 2015
  • The incorporation of sustainability principles into the structural engineering design of buildings is increasingly important. Historically the focus of improvements to the environmental performance of structures has been operational energy considerations. Current research has highlighted the requirement for changing the approach by increasing the consideration of embodied energy in structures. This research was conducted to build on previous research by the authors in quantifying the contribution of column optimization to the embodied energy performance of concrete framed buildings. Ultimately, the authors intend to develop mechanisms through which sustainable design can be quantified, enabling alleviation prior to construction. Columns are a key structural element to consider as part of this development process. The outcomes of this assessment reinforced previous findings, observing that reduced structural weight as a result of other sustainable design measures carries manifold benefits include column design savings. Through the quantification of the embodied energy outcomes during this research phase, the columns were shown to contribute up to 19.71% of the total embodied energy of the structural system dependent upon construction technique used.

  • PDF