• Title/Summary/Keyword: Structural design optimization

Search Result 1,621, Processing Time 0.031 seconds

Composite locomotive frontend analysis and optimization using genetic algorithm

  • Rohani, S.M.;Vafaeesefat, A.;Esmkhani, M.;Partovi, M.;Molladavoudi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.729-740
    • /
    • 2013
  • This paper addresses the structural design of the front end of Siemens ER24 locomotive body. The steel structure of the frontend is replaced with composite. Optimization of the composite lay-up is performed using Genetic Algorithms. Initially an optimized single design for the entire structure is presented. Then a more refined optimum is developed by considering the separate optimization of 7 separate regions of the structure. Significant savings in the weight of the structure are achieved.

Shape Optimization on the Nozzle of a Spherical Pressure Vessel Using the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화 기법을 이용한 구형 압력용기 노즐부의 형상최적화)

  • Lee, Young-Shin;Ryu, Chung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.752-757
    • /
    • 2001
  • To reduce stress concentration around the intersection between a spherical pressure vessel and a cylindrical nozzle under various load conditions using less material, the optimization for the distribution of reinforcement has researched. The ranked bidirectional evolutionary structural optimization(R-BESO) method is developed recently, which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO. In this paper, the optimized intersection shape is sought using R-BESO method for a flush and a protruding nozzle. The considered load cases are a radial compression, torque and shear force.

  • PDF

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

Fibre composite railway sleeper design by using FE approach and optimization techniques

  • Awad, Ziad K.;Yusaf, Talal
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.231-242
    • /
    • 2012
  • This research work aims to develop an optimal design using Finite Element (FE) and Genetic Algorithm (GA) methods to replace the traditional concrete and timber material by a Synthetic Polyurethane fibre glass composite material in railway sleepers. The conventional timber railway sleeper technology is associated with several technical problems related to its durability and ability to resist cutting and abrading action of the bearing plate. The use of pre-stress concrete sleeper in railway industry has many disadvantages related to the concrete material behaviour to resist dynamic stress that may lead to a significant mechanical damage with feasible fissures and cracks. Scientific researchers have recently developed a new composite material such as Glass Fibre Reinforced Polyurethane (GFRP) foam to replace the conventional one. The mechanical properties of these materials are reliable enough to help solving structural problems such as durability, light weight, long life span (50-60 years), less water absorption, provide electric insulation, excellent resistance of fatigue and ability to recycle. This paper suggests appropriate sleeper design to reduce the volume of the material. The design optimization shows that the sleeper length is more sensitive to the loading type than the other parameters.

Modified Simulated Annealing Algorithms for Optimal Seismic Design of Braced Frame Struvtures (2차원 가새골조의 최적내진설계를 위한 MSA 알고리즘)

  • Lee, Sang Kwan;Seong, Chang Won;Park, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.629-638
    • /
    • 2000
  • With the positive features of simulated annealing algorithms such as simplicity of the algorithm and the possibility of finding global optimum solution, SA algorithm has been widely applied to structural optimization problems. However, the algorithms are far from practical applications in structural design or optimization of building structures due to requirement of a large number of iterations and dependency on cooling schedule and stopping criteria. In this paper, with the modification of annealing process and stopping criteria, a MSA algorithm is presented in the form of two phase annealing process for optimal seismic design of braced structures. The performance of the proposed algorithm has been illustrated in detail.

  • PDF

A Study on the Structural Optimization for CAD/CAE Integration (CAD/CAE 통합을 위한 구조설계 최적화에 관한 연구)

  • Park, Chang-Kue;Yang, Young-Soon;Ruy, Won-Son;Jang, Beom-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • In product development, CAD and CAE systems taking part in the design process were individually developed. Furthermore, in product development, different divisions and businesses often have heterogeneous CAD/CAE systems and methods for expressing product data, and addressing this heterogeneity creates additional costs and causes longer development periods. To ensure successful collaboration in the design process, it is therefore imperative that different CAD, CAE, and other related systems be managed in an organic and integrated manner from the initial stages of product development. Therefore, this study suggests an integrated CAD/CAE system including optimization in a more effective and integrated manner but also to support interfacing and the collective use of design and analysis tools. To validate the proposed method, a stiffened plate example is taken as an example. It is found that the proposed method could overcome the bottleneck of CAD and CAE such as transferability of data, though CATIA and ANSYS are used at the moment. Besides, carrying out an optimization process during the CAE process is another essential parts for the structural optimization process.

Local Solution of a Sequential Algorithm Using Orthogonal Arrays in a Discrete Design Space (이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해)

  • Yi, Jeong-Wook;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1399-1407
    • /
    • 2004
  • Structural optimization has been carried out in continuous design space or in discrete design space. Generally, available designs are discrete in design practice. However, the methods for discrete variables are extremely expensive in computational cost. An iterative optimization algorithm is proposed for design in a discrete space, which is called a sequential algorithm using orthogonal arrays (SOA). We demonstrate verifying the fact that a local optimum solution can be obtained from the process with this algorithm. The local optimum solution is defined in a discrete design space. Then the search space, which is a set of candidate values of each design variables formed by the neighborhood of a current design point, is defined. It is verified that a local optimum solution can be found by sequentially moving the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained by using the SOA algorithm

Damage controlled optimum seismic design of reinforced concrete framed structures

  • Gharehbaghi, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • In this paper, an innovative procedure is proposed for the seismic design of reinforced concrete frame structures. The main contribution of the proposed procedure is to minimize the construction cost, considering the uniform damage distribution over the height of structure due to earthquake excitations. As such, this procedure is structured in the framework of an optimization problem, and the initial construction cost is chosen as the objective function. The aim of uniform damage distribution is reached through a design constraint in the optimization problem. Since this aim requires defining allowable degree of damage, a damage pattern based on the concept of global collapse mechanism is presented. To show the efficiency of the proposed procedure, the uniform damage-based optimum seismic design is compared with two other seismic design procedures, which are the strength-based optimum seismic design and the damage-based optimum seismic design. By using the three different seismic design methods, three reinforced concrete frames including six-, nine-, and twelve-story with three bays are designed optimally under a same artificial earthquake. Then, to show the effects of the uniform damage distribution, all three optimized frames are used for seismic damage analysis under a suite of earthquake records. The results show that the uniform damage-based optimum seismic design method renders a design that will suffer less damage under severe earthquakes.

Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm (Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화)

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF

Multi-Level and Multi-Objective Optimization of Framed Structures Using Automatic Differentiation (자동미분을 이용한 뼈대구조의 다단계 다목적 최적설계)

  • Cho, Hyo-Nam;Min, Dae-Hong;Lee, Kwang-Min;Kim, Hoan-Kee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.177-186
    • /
    • 2000
  • An improved multi-level(IML) optimization algorithm using automatic differentiation (AD) for multi-objective optimum design of framed structures is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed algorithm, multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses such as moments, frequencies, and strain energy with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by AD that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. The efficiency and robustness of the IML algorithm, compared with a plain multi-level (PML) algorithm, is successfully demonstrated in the numerical examples.

  • PDF