• Title/Summary/Keyword: Structural design optimization

Search Result 1,621, Processing Time 0.028 seconds

Stiffness Determination Of A Bolted Member Using Optimization Technique (최적화 기법을 이용한 보울트 체결체의 강성 평가)

  • 김태완;조덕상;성기광;손용수;박성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.151-157
    • /
    • 1993
  • In this paper a useful method on evaluating the joint stiffness of bolted memeber was introduced using optimization technique on the basis of Finite Element Method. A finite element model having one directional gap element at bo undary area was introduced to compensate the prying force in jointed members which might caused by geometrical configuration of members. Results showed a good aggrement with classical method in certain range and will be available to definine the design margine of pre-load design.

  • PDF

Optimal Design of Nonlinear Structural Systems via EFM Based Approximations (진화퍼지 근사화모델에 의한 비선형 구조시스템의 최적설계)

  • 이종수;김승진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.122-125
    • /
    • 2000
  • The paper describes the adaptation of evolutionary fuzzy model ins (EFM) in developing global function approximation tools for use in genetic algorithm based optimization of nonlinear structural systems. EFM is an optimization process to determine the fuzzy membership parameters for constructing global approximation model in a case where the training data are not sufficiently provided or uncertain information is included in design process. The paper presents the performance of EFM in terms of numbers of fuzzy rules and training data, and then explores the EFM based sizing of automotive component for passenger protection.

  • PDF

Development and Efficiency Evaluation of Metropolis GA for the Structural Optimization (구조 최적화를 위한 Metropolis 유전자 알고리즘을 개발과 호율성 평가)

  • Park Kyun-Bin;Kim Jeong-Tae;Na Won-Bae;Ryu Yeon-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.27-37
    • /
    • 2006
  • A Metropolis genetic algorithm (MGA) is developed and applied for the structural design optimization. In MGA, favorable features of Metropolis criterion of simulated annealing (SA) are incorporated in the reproduction operations of simple genetic algorithm (SGA). This way, the MGA maintains the wide varieties of individuals and preserves the potential genetic information of early generations. Consequently, the proposed MGA alleviates the disadvantages of premature convergence to a local optimum in SGA and time consuming computation for the precise global optimum in SA. Performances and applicability of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro GA, and Kirkpatrick's SA. Typical numerical examples are used to evaluate the computational performances, the favorable features and applicability of MGA. The effects of population sizes and maximum generations are also evaluated for the performance reliability and robustness of MGA. From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA Is a reliable and efficient tool for structural design optimization.

Structural Optimization of a Joined-Wing Using Equivalent Static Loads (등가정하중을 이용한 접합날개의 구조최적설계)

  • Lee Hyun-Ah;Kim Yong-Il;Park Gyung-Jin;Kang Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.585-594
    • /
    • 2006
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing are joined together in a joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performance and reduction of the structural weight. In this research, dynamic response optimization of a joined-wing is carried out by using equivalent static loads. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. The gust loads are considered as critical loading conditions and they dynamically act on the structure of the aircraft. It is difficult to identify the exact gust load profile. Therefore, the dynamic loads are assumed to be (1-cosine) function. Static response optimization is performed for the two cases. One uses the same design variable definition as dynamic response optimization. The other uses the thicknesses of all elements as design variables. The results are compared.

Multilevel Multiobjective Optimization for Structures (다단계 다목적함수 최적화를 이용한 구조물의 최적설계)

  • 한상훈;최홍식
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • Multi-level Multi-objective optimization(MLMO) for reinforced concrete framed structure is performed, and compared with the results of single-level single-objective optimization. MLMO method allows flexibility to meet the design needs such as deflection and cost of structures using weighting factors. Using Multi-level formulation, the numbers of constraints and variables are reduced at each levels, and the optimization formulation becomes simplified. The force approximation method is used to reflect the variation in design variables between the substructures, and thus coupling is maintained. And the linear approximated constraints and objective function are used to reduce the number of structural analysis in optimization process. It is shown that the developed algorithm with move limit can converge effectively to optimal solution.

  • PDF

Topology optimization with functionally graded multi-material for elastic buckling criteria

  • Minh-Ngoc Nguyen;Dongkyu Lee;Joowon Kang;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.33-51
    • /
    • 2023
  • This research presents a multi-material topology optimization for functionally graded material (FGM) and nonFGM with elastic buckling criteria. The elastic buckling based multi-material topology optimization of functionally graded steels (FGSs) uses a Jacobi scheme and a Method of Moving Asymptotes (MMA) as an expansion to revise the design variables shown first. Moreover, mathematical expressions for modified interpolation materials in the buckling framework are also described in detail. A Solid Isotropic Material with Penalization (SIMP) as well as a modified penalizing material model is utilized. Based on this investigation on the buckling constraint with homogenization material properties, this method for determining optimal shape is presented under buckling constraint parameters with non-homogenization material properties. For optimal problems, minimizing structural compliance like as an objective function is related to a given material volume and a buckling load factor. In this study, conflicts between structural stiffness and stability which cause an unfavorable effect on the performance of existing optimization procedures are reduced. A few structural design features illustrate the effectiveness and adjustability of an approach and provide some ideas for further expansions.

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

Structural Optimization based on Equivalent Static Load for Structure under Dynamic Load (동하중을 받는 구조물의 등가정하중 기반 구조최적화 연구)

  • Kim, Hyun Gi;Kim, Eui young;Cho, Maenghyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.236-240
    • /
    • 2013
  • Due to difficulty of considering dynamic load in side of a computer resource and computing time, it is common that external load is assumed as ideal static load. However, structural analysis under static load cannot guarantee the safety of structural design. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. And previously reported works to distribute equivalent static load were based on ad hoc methods. However, it is appropriate to take into account the stress constraint for the safety design. Moreover, the improper selection of loading position may results in unreliable structural design. The present study proposes the methodology to optimize an equivalent static which distributed on the primary DOFs, DOFs of the constraint elements, DOF of an external load as positions. In conclusion, the reliability of proposed method is demonstrated through a global optimization.

  • PDF

A Study on Optimal Design of Mud Tank with Response Surface Optimization (반응표면 최적화를 이용한 머드탱크 최적 설계에 관한 연구)

  • In-hyuk Nam;Im-jun Ban;Chaeog Lim;Sung-chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.895-905
    • /
    • 2023
  • Mud tanks used for storing and supplying mud in mud supply systems are essential to secure structural stability according to the mud loads inside the tank. In terms of structural stability of the mud tank can be ensured by increasing the thickness of the structure. However, increasing the thickness may cause a problem of increasing production costs. In addition, this increases the weight of the tank, which can cause problems with the trailer loading weight limitation during transportation. To satisfy both these problems and structural stability, the mud tank should be optimally designed. Therefore, this study conducted an optimum design in consideration of the load of the mud tank through the structural analysis and response surface optimization method in ANSYS.

Sizing, geometry and topology optimization of trusses using force method and supervised charged system search

  • Kaveh, A.;Ahmadi, B.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.365-382
    • /
    • 2014
  • In this article, the force method and Charged System Search (CSS) algorithm are used for the analysis and optimal design of truss structures. The CSS algorithm is employed as the optimization tool and the force method is utilized for analysis. In this paper in addition to member's cross sections, redundant forces, geometry and topology variables are considered as the optimization variables. Minimum complementary energy principle is used directly to analyze the structure. In the presented method, redundant forces are calculated by the CSS in order to minimize the energy function. Combination of the CSS and force method leads to an efficient algorithm in comparison to some of the optimization algorithms.