• Title/Summary/Keyword: Structural design optimization

Search Result 1,621, Processing Time 0.036 seconds

Material Topology Optimization Design of Structures using SIMP Approach Part I : Initial Design Domain with Topology of Partial Holes (SIMP를 이용한 구조물의 재료 위상 최적설계 Part I : 부분적인 구멍의 위상을 가지는 초기 설계영역)

  • Lee, Dong-Kyu;Park, Sung-Soo;Shin, Soo-Mi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This study shows an implementation of partial holes in an initial design domain in order to improve convergences of topology optimization algorithms. The method is associated with a bubble method as introduced by Eschenauer et al. to overcome slow convergence of boundary-based shape optimization methods. However, contrary to the bubble method, initial holes are only implemented for initializations of optimization algorithm in this approach, and there is no need to consider a characteristic function which defines hole's deposition during every optimization procedure. In addition, solid and void regions within the initial design domain are not fixed but merged or split during optimization Procedures. Since this phenomenon activates finite changes of design parameters without numerically calculating movements and positions of holes, convergences of topology optimization algorithm can be improved. In the present study, material topology optimization designs of Michell-type beam utilizing the initial design domain with initial holes of varied sizes and shapes is carried out by using SIMP like a density distribution method. Numerical examples demonstrate the efficiency and simplicity of the present method.

Optimization Methods for Design of Spatial Structures

  • Ohsaki, Makoto
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.3-51
    • /
    • 2005
  • Optimization methods are presented for design of shells and spatial structures. The effectiveness of using optimization techniques are demonstrated by the following examples: 1. Shape design of ribbed shells. 2. Shape design of membrane structures. 3. Optimization of single-layer spatial truss against buckling. 4. Application of heuristic methods to optimization of space frames. The readers may first see the numerical results to find that is possible by optimization. In the appendix, overview of structural optimization in architectural design is presented, and effectiveness of optimization is demonstrated by small examples. Each chapter is a part of a published paper, or translation from a Japanese article. So there might be some difficulties for understanding the details: inconsistency of the story, etc., which the author hope not to lead to major difficulties for understanding the concepts and results.

  • PDF

Application of a Multidisciplinary Design Optimization Algorithm to Design of a Belt Integrated Seat Considering Crashworthiness (충돌을 고려한 안전띠 일체형 의자의 다분야 통합최적설계)

  • Shin Moon-Kyun;Kang Byung-Soo;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.395-402
    • /
    • 2005
  • Recently Multidisciplinary Design Optimization Based on Independent Subspaces (MDOIS), an MDO (multidisciplinary design optimization) algorithm, has been proposed. In this research, an MDO problem is defined for design of a belt integrated seat considering crashworthiness, and MDOIS is applied to solve the problem. The crash model consists of an airbag, a belt integrated seat (BIS), an energy absorbing steering system, and a safety belt. It is found that the current design problem has two disciplines - structural nonlin- ear analysis and occupant analysis. The interdisciplinary relationship between the disciplines is identified and is addressed in the system analysis step in MDOIS. Interdisciplinary variables are belt load and stiffness of the seat, which are determined in system analysis step. The belt load is passed to the structural analysis subspace and stiffness of the seat back frame to the occupant analysis subspace. Determined design vari- ables in each subspace are passed to the system analysis step. In this way, the design process iterates until the convergence criterion is satisfied. As a result of the design, the weight of the BIS and Head Injury Crite- rion (HIC) of an occupant are reduced with specified constraints satisfied at the same time. Since the system analysis cannot be formulated in an explicit form in the current example, an optimization problem is formu - lated to solve the system analysis. The results from MDOIS are discussed.

A Development of Two-Point Reciprocal Quadratic Approximation Mehtod for Configuration Optimization of Discrete Structures (불연속구조물의 배치최적설계를 위한 이점역이차근사법의 개발)

  • Park, Yeong-Seon;Im, Jae-Mun;Yang, Cheol-Ho;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3804-3821
    • /
    • 1996
  • The configuration optimization is a structural optimization method which includes the coordinates of a structure as well as the sectional properties in the design variable set. Effective reduction of the weight of discrete structures can be obrained by changing the geometry while satisfying stress, Ei;er bickling, displacement, and frequency constraints, etc. However, the nonlinearity due to the configuration variables may cause the difficulties of the convergence and expensive computational cost. An efficient approximation method for the configuration optimization has been developed to overcome the difficulties. The method approximates the constraint functions based onthe second-order Taylor series expansion with reciprocal design variables. The Hessian matrix is approzimated from the information on previous design points. The developed algotithms are coded and the examples are solved.

Advanced Structural Silicone Glazing

  • Kimberlain, Jon;Carbary, Larry;Clift, Charles D.;Hutley, Peter
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.345-354
    • /
    • 2013
  • This paper presents an advanced engineering technique using finite element analysis to improve structural silicone glazing (SSG) design in high-performance curtain wall systems for building facade. High wind pressures often result in bulky SSG aluminum extrusion profile dimensions. Architectural desire for aesthetically slender curtain wall sight-lines and reduction in aluminum usage led to optimization of structural silicone bite geometry for improved stress distribution through use of finite element analysis of the hyperelastic silicone models. This advanced design technique compared to traditional SSG design highlights differences in stress distribution contours in the silicone sealant. Simplified structural engineering per the traditional SSG design method lacks accurate forecasting of material and stress optimization, as shown in the advanced analysis and design. Full scale physical specimens were tested to verify design capacity in addition to correlate physical test results with the theoretical simulation to provide confidence of the model. This design technique will introduce significant engineering advancement to the curtain wall industry and building facade.

Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중을 이용한 차량 전면구조물 충돌최적설계)

  • Lee, Youngmyung;Ahn, Jin-Seok;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Design Space (직교배열표를 이용한 이산공간에서의 최적화 알고리듬 개발)

  • Lee, Jeong-Uk;Park, Jun-Seong;Lee, Gwon-Hui;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1621-1626
    • /
    • 2001
  • The structural optimization have been carried out in the continuous design space or in the discrete design space. Methods fur discrete variables such as genetic algorithms , are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete des inn space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions leer constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

Material property optimization of Pultruded FRP bridge deck section (인발성형 FRP 바닥판의 물성 최적화)

  • 최영민;조효남;이종순;김희성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.135-142
    • /
    • 2004
  • The apparent advantages of FRP (fiber reinforced plastics) composites over the conventional structural materials may be attributed to their high specific strength and stiffness. Other affordable properties of FRPs including an excellent durability make them particularly attractive for the structures in severe service conditions. Therefore, the material and sectional properties of a FRP structural component should be designed to meet its specific requirements and service conditions. This paper is performed the material property optimization under optimum design of pultruded FRP bridge deck section. In the problem formulation, an objective function is selected to minimize the maximum R(strength ratio). The thickness of layers, volumes of fibers and matrix fiber orientation, and stacking sequence of FRPs are used as the design variables. Strength ratio in the design code, material failure criteria and pultruded manufacture thickness are selected as the design constraints to enhance the material performance of FRP decks. From the results of the numerical investigation, we obtained the optimum deck section profile for conventional using object.

  • PDF

Stochastic optimum design of linear tuned mass dampers for seismic protection of high towers

  • Marano, Giuseppe Carlo;Greco, Rita;Palombella, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.603-622
    • /
    • 2008
  • This work deals with the design optimization of tuned mass damper (TMD) devices used for mitigating vibrations in high-rise towers subjected to seismic accelerations. A stochastic approach is developed and the excitation is represented by a stationary filtered stochastic process. The effectiveness of the vibration control strategy is evaluated by expressing the objective function as the reduction factor of the structural response in terms of displacement and absolute acceleration. The mechanical characteristics of the tuned mass damper represent the design variables. Analyses of sensitivities are carried out by varying the input and structural parameters in order to assess the efficiency of the TMD strategy. Variations between two different criteria are also evaluated.

Decision Making Method for Structural Design Scheme (구조 설계방안에 대한 의사결정 방법)

  • 모재근;박춘욱;손수덕;강문명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.243-250
    • /
    • 1998
  • In this paper, for the fuzzy constraints not only fuzziness of the constraints relation but also uncertainties of the response of the structures, allowable limits of the constraints and structural design variables, etc. are considered,. so that the fuzzy optimization of the structures can involve more wide scope of the problem and the fuzzy optimal problem is more generalized. In the decision making of the structural design scheme, every possible cases of the fuzzy variables, random variables and fuzzy-random variables, etc. for the uncertainties of the optimization problem are all considered, so the most general method of the decision making is presented. And a numerical example for the three bar truss is offered to demonstrate the reliability and execution possibility proposed method in this paper.

  • PDF