• Title/Summary/Keyword: Structural deformation

Search Result 2,859, Processing Time 0.024 seconds

Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology (호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계)

  • Lee Jae-Jun;Song Ki-Nam;Park Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

Study on the Fire Resistance of Structural Beams Made of Ordinary Structural Steel(SS 400) According to Boundary Conditions (경계조건에 따른 일반강재 적용 보부재의 내화성능 연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.167-168
    • /
    • 2014
  • Building destruction can be occurred by decreasing of structural stability and deformation according to fire. Especially, a structural behavior of beam can be shown a slightly difference by beam types. In this paper, an evaluation of the structural stability of beam made of ordinary structural steel designed by fixed and simple boundary condition was done by an analytic method using mechanical properties of SS 400 and an heat transfer theory.

  • PDF

Evaluation of Diaphragm Effect for Hybrid Structural Systems Using Finite Element Method (유한요소법을 이용한 주상복합건물의 강막작용에 의한 영향 평가)

  • 김희철;최성우;홍원기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.19-32
    • /
    • 2003
  • The structural system of a hybrid building is composed of upper shear wall which resist lateral force by bending deformation and lower frame which resist lateral force by shear deformation. A deep transfer girder is used to transfer gravity load safely from super structures to structural frame beneath. Because of the vertical discontinuity, a building with transfer girder must be analyzed by dynamic analysis. However, this structural system has many problems in performing dynamic analysis that cannot be solved by general analysis procedure. The slabs In transfer floor are considered as either a Plate element or a rigid diaphragm in finite element analysis without appropriate evaluation of their characteristics. Therefore, a reasonable analysis method is proposed in this study by evaluating the diaphragm effect of a hybrid structure system.

A Study on Structural Safety of Integrated Machine for Grinding Wheel Forming (연삭 휠 형상 복합가공시스템의 구조 안전성에 관한 연구)

  • Lee, Won-Suk;An, Beom-Sang;Kim, Jin-Hyeon;Lee, Jong-Chan;Woo, Bong-Geun;Lee, Young-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • This study evaluated the structural safety of a heavy-duty integrated machine for grinding wheel forming. Structural analysis was performed to evaluate the structural safety of the base. The base was designed by dividing the single base and detachable base. The analysis conditions were applied to the own weight and the load of component parts. From the structural analysis results, although the stress of the detachable base was decreased, the amount of deformation was increased. If the deformation of the detachable base decreases, it is expected to be safer than the single base.

The Study for Bead Effect in Inner Case on Thermal Deformation of Refrigerator (냉장고 내벽의 비드가 열변형에 미치는 영향에 관한 연구)

  • Zhai, JianGuang;Cho, Jong-Rae;Jeon, Woo-Jin;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.96-101
    • /
    • 2011
  • Under extreme test or operation condition, refrigerator endures complicated stresses state and thermal bowing deformation arises on the sidewall. Shelf rails designed in the inner case provide increased surface area to permit expansion without bowing, and also increase structural rigidity to resist bowing. In this study, we designed six different shelf patterns of refrigerator model and studied the bead on refrigerator deformation using finite element method (FEM). Analysis result shows that increasing the numbers of beads properly in refrigerator is more helpful to reduce thermal bowing deformation. In addition, the beads would decrease stress on refrigerator sidewall. However, vertical beads have no effect to reduce thermal deformation of the bowing.

Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory

  • Daouadj, Tahar Hassaine;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.49-63
    • /
    • 2017
  • This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be noticed.

Structural Optimal Design of the Frame of a Desktop Servo Pressing Machine (탁상용 압입기 프레임의 구조최적설계)

  • Lee, Boo-Youn;Jung, Jin-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3142-3150
    • /
    • 2013
  • Present research deals with an optimal design of the C-type frame of a desktop pressing machine to minimize its deformation which plays an important role in accuracy of the machine. Deformation pattern of the frame is analyzed by the finite element method. Design parameters are defined for the frame to derive an optimal design. Displacement and weight sensitivities of the parameters are analyzed using the method of the parametric study. On the basis of the response curves for the parameters, optimal designs of the frame are proposed. Effectiveness of the optimal design is verified by analyses in the viewpoint of the deformation and weight of the frame. Deformation of the optimized frame without increase of the weight is 87.5 % of the original frame.

Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model (내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델)

  • Yun, Su-Jin;Lee, Sang-Yeun;Park, Dong-Chang;Yoon, Hyun-Gul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.82-88
    • /
    • 2011
  • In the present work, FEM analyses are carried out to investigate the fractures occurred within the structural part in the course of combustion experiment. The loss of structural integrity stems from the localized deformation and the damage induced due to a severe change in the thermal load. Moreover, the two-back stress evolution model is proposed using the Armstrong-Frederick and the Phillips' rules to depict the plastic deformation, and the continuum damage mechanics is also incorporated into the present model. It is noted that the present model is able to formulate a wide range of constitutive description with ease. The numerical results depicts that a severe strain localization and damage evolution can be obtained depending on the dominant back stress.

Seismic Design of Steel Frame Model Considering the Panel Zone and Viscous Dampers (패널존과 점성감쇠기를 고려한 강골조 구조물의 내진 설계 모델)

  • Park, Sun-Eung;Lee, Tack-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.87-94
    • /
    • 2020
  • The present study is aimed to calculate the optimal damping according to the seismic load on the structure with a non-seismic design to perform structure analysis considering the deformation of structural joint connection and panel zone; to develop design program equipped with structural stability of the steel frame structures reinforced with the panel zone and viscous dampers, using the results of the analysis, in order to systematically integrate the seismic reinforcement of the non-seismic structures and the analysis and design of steel frame structures. The study results are as follows: When considering the deformation of the panel zone, the deformation has been reduced up to thickness of the panel double plate below twice the flange thickness, which indicates the effect of the double plate thickness on the panel zone, but the deformation showed uniform convergence when the ration is more than twice. The SMRPF system that was applied to this study determines the damping force and displacement by considering the panel zone to the joint connection and calculating the shear each floor for the seismic load at the same time. The result indicates that the competence of the damper is predictable that can secure seismic performance for the structures with non-seismic design without changing the cross-section of the members.