• 제목/요약/키워드: Structural defects

검색결과 593건 처리시간 0.023초

프러시안블루 유사체를 활용한 이차전지 연구 (Prussian Blue Analogues for Rechargeable Batteries)

  • 김양문;최승연;최장욱
    • 전기화학회지
    • /
    • 제22권1호
    • /
    • pp.13-21
    • /
    • 2019
  • 프러시안 블루 유사체(Prussian blue analogue; PBA)는 두 종류의 전이금속이 시안화물 리간드와의 배위결합을 통해 서로 연결되어 만들어진 구조체이다. PBA는 넓은 골격구조를 통해, 다양한 이온의 가역적 삽입/탈리를 가능하게 할 뿐 아니라, 두 종류의 전이금속이 반응하여 높은 비용량을 구현한다. 또한, PBA는 상온에서 수용액 상에서의 공침반응을 통해 합성 되기에, 경제적이며 친환경적으로 생산된다. 하지만, 결정의 형성이 빠르게 진행되며, 수용액 상에서 발생하기에 결정 내 공공격자결함(Vacancy)과 결정수(Crystal water)가 발생하기 쉬우며, 이는 전기화학적 성능에 영향을 미친다. 따라서 이러한 공공격자결함 및 결정수의 생성 억제를 통해 PBA의 전기화학성능 향상에 대한 연구가 활발하게 진행되고 있다. 공공격자결함의 경우 반응속도 제어를 통해 합성단계에서 제어 되며, 결정수는 합성 후 진공 열처리 및 산화제와 복합체 형성을 통해 제거할 수 있다. 뿐만 아니라 PBA의 구조 내에 비활성 전이금속 도핑을 통해 상기 결함들로 인해 PBA가 전기화학 반응 중에 겪는 구조적 불안정성을 해소할 수 있다.

Deep learning-based sensor fault detection using S-Long Short Term Memory Networks

  • Li, Lili;Liu, Gang;Zhang, Liangliang;Li, Qing
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.51-65
    • /
    • 2018
  • A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.

Development of paint area estimation software for ship compartments and structures

  • Cho, Doo-Yeoun;Swan, Sam;Kim, Dave;Cha, Ju-Hwan;Ruy, Won-Sun;Choi, Hyung-Soon;Kim, Tae-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.198-208
    • /
    • 2016
  • The painting process of large ships is an intense manual operation that typically comprises 9-12% of the total shipbuilding cost. Accordingly, shipbuilders need to estimate the required amount of anti-corrosive coatings and painting resources for inventory and cost control. This study aims to develop a software system which enables the shipbuilders to estimate paint area using existing 3D CAD ship structural models. The geometric information of the ships structure are extracted from the existing shipbuilding CAD/CAM system and used to create painting zones. After specifying the painting zones, users can generate the paint faces by clipping structural parts inside each zone. Finally, the paint resources may be obtained from the product of the paint areas and required paint thickness. Implementing the developed software system to real shipbuilders' operations has contributed to improved productivity, faster resource estimation, better accuracy, and fewer coating defects over their conventional manual calculation methods for painting resource estimation.

선박용 대형 계류장비의 개발과 강도 평가 (A Study on the Development and Strength Evaluation of the Mooring Fittings with Big Capacity)

  • 김영식;김을년;김미희;김경연
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.1-7
    • /
    • 2017
  • It has been developed large mooring fittings having the capacity of 160 tons and 180 tons installed on 170K LNG FSRU. The finite element analysis for the mooring fittings was carried out in order to check the structural integrity and to confirm satisfaction of the rule requirements. The 3 kinds of mooring fittings such as chock, bollard and universal fairlead are selected for FE analysis and load test. According to the FE analysis results, all the stress levels satisfied the acceptance criteria guided by the IACS UR A2, ISO standard, ship rules and OCIMF. As test results under design load, no structural defects were found.

  • PDF

자동차 B-pillar부품의 스폿용접 및 접착 혼용 용접부의 충돌특성 및 해석에 관한 연구 (A Study on the Crash Characteristics and Analysis of Spot+adhesive Welds in Automobile B-pillar Parts)

  • 최영수;윤상만;조용준;이세헌
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.72-81
    • /
    • 2011
  • In the present day, the needs of new steel for lightweight car-body have been increased in the automotive industry. however, the resistance spot welding is difficult to apply to the new steel because of the narrow weld current range and defects. As the solutions to these problems, adhesive bonding process is proposed. Adhesive bonding which reduce noise and vibration can be applied to joining the new steel. In this study, crash tests of b-pillar applied the resistance spot welding, structural adhesive bonding, the mixture of the structural adhesives and resistance spot welding were performed. And FEM crash model for b-pillar applied the structural adhesive bonding was developed. The results of experiment and analysis on b-pillar crash test were compared to verify the validity.

국산 침엽수구조재의 허용응력설정에 관하여 - 1종 구조재를 중심으로 - (Assignment of the Allowable Design Values for Domestic Softwood Structural Lumber - Structural I-grade -)

  • 오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권1호
    • /
    • pp.11-16
    • /
    • 1996
  • The purpose of this paper is to present a summary of assignment design values according to domestic softwood structural lumber grading rules. Allowable stresses for visually graded lumber were determined from basic data on small. clear specimens. The data corrected for variability such as natural defects and other factors. The procedure adopted by Japan was used for assigning allowable design values. Strength ratios in relation to each defect were taken from ASTM D 245-81. Korean pine(Pinus koraiensis S. et Z.), Korean red pine(Pinus densiflora S. et Z.), Japanese larch(Larix leptolepis Gordon) and Needle fir(Abies holophylla Max) were applied to this study. The calculated allowable stresses were same in Korean pine and Korean red pine. These values were highest in Japanese larch lowest in Needle fir. So, it is desirable for these species to be classified into different catagories Species Group. However, accurate comparison in design values on lumber grading rules among U.S., Japan and Korea was somewhat difficult. And full scale testing will be necessary for accurate determination of the correction factors to setting up design values.

  • PDF

갈륨 도핑된 ZnO 나노와이어의 합성과 구조적 광학적 특성 분석 (Structural and optical properties of Ga-doped ZnO nanowires synthesized by pulsed laser deposition in furnace)

  • 김창은;안병두;전경아;손효정;김건희;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.46-47
    • /
    • 2006
  • Ga-doped ZnO nanowires have been synthesized by pulsed laser deposition (PLD) in furnace on gold coated (0001) sapphire substrates. The effect of repetition rate on structural and optical properties of Ga-doped ZnO nanowires are investigated. By controlling repetition rate, the diameter of nanowires is varied between about 60 and 100 nm, and the length of nanowires is varied between about 2 and 4 um. The X-ray diffraction (XRD) reveals the structural defects induced by the Ga doping. The room temperature photoluminescence (PL) spectra of Ga-doped ZnO nanowires show strong UV emission between 382.394 and 385.279 nm with negligible visible emission.

  • PDF

복합재 항공구조물의 손상허용평가를 위한 운항수명의 확률적 모델 (Probabilistic Model of Service Life to Evaluate Damage Tolerance of Composite Structure)

  • A.스튜어트;A.우샤코프;심재열;황인희
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.245-248
    • /
    • 2000
  • Modern aircraft composite structures are designed using a damage tolerance philosophy. This design philosophy envisions sufficient strength and structural integrity of the aircraft to sustain major damage and to avoid catastrophic failure. The only reasonable way to treat on the same basis all the conditions and uncertainties participating in the design of damage tolerant composite aircraft structures is to use the probability-based approach. Therefore, the model has been developed to assess the probability of structural failure (POSF) and associated risk taking into account the random mechanical loads, random temperature-humidity conditions, conditions causing damages, as well as structural strength variations due to intrinsic strength scatter, manufacturing defects, operational damages, temperature-humidity conditions. The model enables engineers to establish the relationship between static/residual strength safety margins, production quality control requirements, in-service inspection resolution and criteria, and POSF. This make possible to estimate the cost associated with the mentioned factors and to use this cost as overall criterion. The methodology has been programmed into software.

  • PDF

탄소섬유시트로 보강된 철근콘크리트 보의 연성거동에 관한 실험적 고찰 (Experimental Study on the Ductile Behavior of Reinforced Concrete Beams with Carbon Fiber Sheets)

  • 박현정;박성수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.181-189
    • /
    • 2001
  • Recently, the need for strengthening reinforced concrete(R.C.) structure has been increased, particularly when there is an increase in load requirements, a change in use, a degradation problem, or design/construction defects. The use of composite materials for structural repair presents several advantages and has been investigated all over the world. It is well known that the incorporation of carbon fiber sheet(CFS) with concrete is one of the most effective ways to strengthen the R.C. structure. In this papers, experimentally investigated the ductile behavior of the R.C. beams strengthened with CFS, and provided the basic data for design of R.C. beams strengthened with CFS. Tests were carried out with 15 beams ($20cm{\times}30cm{\times}240cm$) reinforced with CFS, and with parameters including and the ratio of tensile reinforcement to that of balanced condition and number of CFS. The results show that strengthened and non-strengthened beams exhibit different ductile behovior. Non-strengthened beams showed increase of ductility as amount of the tensile reinforcement decreased. However, bearing capacity of the CFS-strengthened beams are dictated by the strength of the CFS layers that a very high ductility is indicated for the beams with large number of CFS.

  • PDF

Probing the Atomic Structures of Synthetic Monolayer and Bilayer Hexagonal Boron Nitride Using Electron Microscopy

  • Tay, Roland Yingjie;Lin, Jinjun;Tsang, Siu Hon;McCulloch, Dougal G.;Teo, Edwin Hang Tong
    • Applied Microscopy
    • /
    • 제46권4호
    • /
    • pp.217-226
    • /
    • 2016
  • Monolayer hexagonal boron nitride (h-BN) is a phenomenal two-dimensional material; most of its physical properties rival those of graphene because of their structural similarities. This intriguing material has thus spurred scientists and researchers to develop novel synthetic methods to attain scalability for enabling its practical utilization. When probing the growth behaviors and structural characteristics of h-BN, the use of appropriate characterization techniques is important. In this review, we detail the use of scanning and transmission electron microscopies to investigate the atomic configurations of monolayer and bilayer h-BN grown via chemical vapor deposition. These advanced microscopy techniques have been demonstrated to provide intimate insights to the atomic structures of h-BN, which can be interpreted directly or indirectly using known growth mechanisms and existing theoretical calculations. This review provides a collective understanding of the structural characteristics and defects of synthetic h-BN films and facilitates a better perspective toward the development of new and improved synthesis techniques.