• 제목/요약/키워드: Structural damping

검색결과 1,232건 처리시간 0.035초

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

동적 신뢰성 해석 기법의 수치 안정성에 관하여 (On the Numerical Stability of Dynamic Reliability Analysis Method)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.49-57
    • /
    • 2020
  • In comparison with the existing static reliability analysis methods, the dynamic reliability analysis(DyRA) method is more suitable for estimating the failure probability of a structure subjected to earthquake excitations because it can take into account the frequency characteristics and damping capacity of the structure. However, the DyRA is known to have an issue of numerical stability due to the uncertainty in random sampling of the earthquake excitations. In order to solve this numerical stability issue in the DyRA approach, this study proposed two earthquake-scale factors. The first factor is defined as the ratio of the first earthquake excitation over the maximum value of the remaining excitations, and the second factor is defined as the condition number of the matrix consisting of the earthquake excitations. Then, we have performed parametric studies of two factors on numerical stability of the DyRA method. In illustrative example, it was clearly confirmed that the two factors can be used to verify the numerical stability of the proposed DyRA method. However, there exists a difference between the two factors. The first factor showed some overlapping region between the stable results and the unstable results so that it requires some additional reliability analysis to guarantee the stability of the DyRA method. On the contrary, the second factor clearly distinguished the stable and unstable results of the DyRA method without any overlapping region. Therefore, the second factor can be said to be better than the first factor as the criterion to determine whether or not the proposed DyRA method guarantees its numerical stability. In addition, the accuracy of the numerical analysis results of the proposed DyRA has been verified in comparison with those of the existing first-order reliability method(FORM), Monte Carlo simulation(MCS) method and subset simulation method(SSM). The comparative results confirmed that the proposed DyRA method can provide accurate and reliable estimation of the structural failure probability while maintaining the superior numerical efficiency over the existing methods.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

Isolation and characterization of an antifungal substance from Burkholderia cepacia, an endophytic bacteria obtained from roots of cucumber.

  • Park, J.H.;Park, G.J.;Lee, S.W;Jang, K.S.;Park, Y.H.;Chung, Y.R.;Cho, K.Y.;Kim, J.C.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.95.2-96
    • /
    • 2003
  • In order to develop a new microbial fungicide for the control of vegetable diseases using endophytic bacteria, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth media, their antifungal activities were screened by in vivo bioassays against Botrytis cinerea(tomato gray mold), Pythium ultimum(cucumber damping-off), Phytopkhora infestans(tomato late blight), Colletotrichum orbiculare(cucumber anthracnose), and Blumeria graminis f. sp. hordei(barley powdery mildew). As the results of screening, 38 bacterial strains showed potent antifungal activities against at least one of 5 plant pathogens. A bacterial strain EB072 displayed potent disease control activities against 3 plant diseases. Among the bacterial strains with a potent antifungal activity against cucunlber anthracnose, three bacterial strains, EB054, EB151 and EB215, also displayed a potent in vitro antifungal activity against C. acutatum, a fungal agent causing pepper anthracnose. A bacterial strain EB215 obtained from roots of cucumber was identified as Burkholderia cepacia based on its physiological and biochemical characteristics and 165 rRNA gene sequence. An antifungal substance was isolated from the liquid cultures of B. cepacia EB215 strain by ethyl acetate partitioning, repeated silica gel column chromatography, and invitro bioassay, Its structural determination is in progress by various instrumental analyses.

  • PDF

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권4호
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

연구용 원자로의 정지봉 장치 성능에 미치는 인자 분석과 성능 시험 (Performance test and factor analysis on the performance of shutoff units with the research reactor)

  • 김경련;김석범;고재명;문균영;박종호
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.41-45
    • /
    • 2007
  • The shutoff unit was designed to provide rapid insertion of neutron absorbing material into the reactor core to shutdown the reactor quickly and also to withdraw the absorber slowly to avoid a log-rate trip. Four shutoff units were installed on the HANARO reactor but the half-core test facility was equipped with one shutoff unit. The reactor trip or shutdown is accomplished by four shutoff units by insertion of the shutoff rods. The shutoff rod(SOR) is actuated by a directly linked hydraulic cylinder on the reactor chimney, which is pressurized by a hydraulic pump. The rod is released to drop by gravity, when triplicate solenoid valves are de-energized to vent the cylinder. The hydraulic pump, pipe and air supply system are provided to be similar with the HANARO reactor. The shutoff rod drops for 647mm stroke within 1.13 seconds to shut down the reactor and it is slowly inserted to the full down position, 700mm, with a damping. We have conducted the drop test of the shutoff rod in order to show the performance and the structural integrity of operating system of the shutoff unit. The present paper deals with the 647mm drop time and the withdrawal time according to variation of the pool water temperature, the water level and the core flow.

공연하중에 의한 바닥진동 설계용 동하중계수 (Dynamic Load Factor for Floor Vibration due to Lively Concerts)

  • 홍갑표;윤광섭
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.721-728
    • /
    • 2002
  • 현대 구조물의 고강도화, 경량화에 따라 구조물의 질량과 감쇠가 줄어들고 있어, 구조물의 진동사용성 문제가 중요하게 부각되고 있다. 특히 율동진동은 공연장, 경기장, 댄스홀, 에어로빅 등과 같이 다수이 군중의 리듬에 맞춰 가진행위가 이루어지는 것으로서, 국내에서도 율동진동에 의한 구조물의 진동문제가 다수 보고되고 있으나 설계기준 미비로 설계단계에서의 대응이 이루어지지 못하고 있다. 그러므로 본 연구에서는 다수의 점핑행위가 예상되는 공연장의 진동설계를 위하여 실제 공연장을 대상으로 진동실험 및 계측을 통하여 동하중계수를 구해냈다. 진동 실험은 실험모드해석과 더불어, 가진진동수별, 율동참여자의 숫자에 따라 실시하였으며, 진동계측은 상시계측시스템을 설치하여 실제 공연시 가속도 응답을 계측하고 동하중계수를 구해내었다. 기존의 NBCC 규준에서는 공연시 2차 조화항까지 고려토록 되어 있으나 연구결과 3차 조화항까지 고려해야 되며, 동하중계수 역시 과소평가 되어 있는 것으로 나타났다.

실험 모드해석을 이용한 균열 적층복합판의 손상평가 (Damage Evaluation of Cracked Laminated Composite Plates Using Experimental Modal Analysis)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제24권4호
    • /
    • pp.399-410
    • /
    • 2012
  • 본 연구에서는 실험적 모드해석 기법을 이용하여 캔틸레버 및 양단고정 직사각형 적층복합판의 동적 테스트가 수행되었다. 균열 성장으로 인한 손상평가를 위하여 적층복합판에 인위적인 단계별 손상(균열)을 가하였으며, 충격해머 모드실험에 의해 얻어진 주파수응답함수(FRF), MAC(Modal Assurance Criterion) 값 및 모드매개변수(진동수, 모드형상, 감쇠비)의 변화를 분석하였다. 각 단계별 손상에 대한 적층복합판의 실험적 모드매개변수를 검증하기 위하여 유한요소해석으로부터 구한 고유진동수와 모드형상을 비교하였다. 손상은 벤치마크로서의 유한요소모델을 보정하는 과정으로부터 얻게 되는 적층복합판의 기하학적 특성 및 구조적 거동의 변화를 통하여 평가될 수 있음을 보여주었다.

유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가 (Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects)

  • 김동현;김유성
    • 한국항공우주학회지
    • /
    • 제36권1호
    • /
    • pp.72-78
    • /
    • 2008
  • 본 연구에서는 블레이드 구조 변형 효과를 고려하여 스테이터-로터 상호간섭 케스케이드 모델의 성능평가를 위한 유체-구조 연계해석 시스템을 개발하였다. 고정된 스테이터와 회전하는 로터는 상호간섭 영향이 유동해석에 고려되었으며, 레이놀즈-평균화 난류 방정식인 Spalart-Allmaras 모델과 k-ω SST 난류 모델이 압축성 유동박리 효과를 고려한 유동하중을 예측하기 위해 적용되었다. 정적인 유체-구조 연계해석과 수렴율 증진을 효과적으로 수행하기 위하여 큰 인공 감쇠를 가지는 연계 Newmark 시간적분 기법을 적용하였다. 수치실험을 통해 탄성축 위치에 따른 구조변형 효과가 케스케이드 성능에 미치는 영향을 파악하였다. 구조변형 효과가 고려된 경우 일반적인 강체 블레이드 모델에 대한 성능예측 결과와 다소 차이가 유발될 수 있음을 보였으며 공력탄성학적 영향을 고찰하였다.