• Title/Summary/Keyword: Structural composites

Search Result 927, Processing Time 0.027 seconds

A Strategy of a Gap Block Design in the CFRP Double Roller to Minimize Defects during the Product Conveyance (제품 이송 시 결함 최소화를 위한 CFRP 이중 롤러의 Gap block 설계 전략)

  • Seung-Ji Yang;Young-june Park;Sung-Eun Kim;Jun-Geol Ahn;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • Due to the structural characteristic of a double roller, the double roller can have various deformation behaviors depending on a gap block design, even if dimensions and loading conditions for the double roller are the same. Based on this feature, we propose a strategy for designing the gap block of the carbon-fiber reinforced plastic (CFRP) double roller to minimize defects (e.g., sagging and wrinkling), which can be raised during the product conveying process, with the pursue of the lightweight design. In the suggested strategy, analysis cases are first selected by considering main design parameters and engineering tolerances of the gap block, and then deformation behaviors of these selected cases are extracted using the finite element method (FEM). Here, to obtain the optimal gap block parameters that satisfy the purpose of this study, deformation deviations in the contact area are calculated and compared using the extracted deformation behaviors. Note that the contact area in this work is located between the product and the roller. As a result, through the design method of the gap block proposed in this work, it is possible to construct the CFRP double roller that can significantly decrease the defects without changing the overall sizes of the roller. A detailed method is suggested herein, and the results are evaluated in a numerical way.

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Conceptual Design of the Three Unit Fixed Partial Denture with Glass Fiber Reinforced Hybrid Composites (Glass fiber 강화 복합레진을 사용한 3본 고정성 국소의치의 개념 설계 연구)

  • Na, Kyoung-Hee;Lee, Kyu-Bok;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • The results of the present feasibility study are summarized as follows, 1. The three unit bridge of knitted material and UD fibre reinforcement has both the rigidity and the strength against a vertical occlusal load of 75N. 2. Stress concentration at the junctional area between the bridge and the abutments, i.e. between the pontic and the knitted caps was observed. In the case of the bridge with reinforcement straps, it was partly shown that the concentration problem could be improved by simply increasing the fillet size at the area. Further refining in the surface of the junctional area will be needed to ensure a further improvement in the stress distribution. This will require some trade off in the level of the stress and the available space. A parametric study will help to decide the appropriate size of the fillet. 3. Design refinement is a must to improve the stress distribution and realize the most favourable shape in terms of fabrication. The current straight bar with a constant cross section area can be redesigned to a tapered shape. The curve from the dental arch should also be placed on the pontic design. In accordance with design refinement, the resistance of the bridge frame to other load cases should be evaluated. 4. Although not included in the present feasibility study, it is estimated that bridges of the anterior teeth can be made strong enough with the knitted material without further reinforcement using unidirectional materials. In this regard, a feasibility study on design concepts and stress analysis for 3, 4, 5 unit bridge is suggested. 5. Two types of bridge were analysed in terms of fatigue. The safe life design concept, i.e. fatigue design concept, looks reasonable for the bridge where if cracks should form and propagate there is virtually nothing a dentist to do. The bridge must be designed so that no crack will be initiated during the life span. In the case of crowns, however, if constructed with composite resin with knitted materials, it might be possible to repair them, which in general is impossible for crowns of PFM or of metal. Therefore for composite resin crowns, a damage tolerance design concept can be applied and reasonably higher operational stresses can be allowed. In this case, of course, a periodic inspection program should be established in parallel. 6. Parts of future works in terms of structural viewpoint which need to be addressed are summarized as the following: 1) To develop processing technology to accommodate design concepts; 2) More realistic modelling of the bridge and analysis-geometry and loading condition. Thickness variation in the knitted material, taper in the pontic, design for anterior tooth bridge, the effect of combined loads, etc, will need to be included; 3) To develop appropriate design concepts and design goals for the fibre composite FPD aiming at taking the best advantage of knitted materials, including the damage tolerance design concept; 4) To develop testing method and perform test such as static ultimate load test, fatigue test, repair test, etc, as necessary.

Structural and Physical Properties of Reflective Sheets Prepared by Using Glass Beads (유리구슬을 사용하여 제조된 재귀반사시트의 구조 및 재귀반사 특성 연구)

  • Lim, Du-Hyun;Lee, Min-Ho;Heo, Min-Yeong;Ahn, Jou-Hyeon;Park, Jin-Woo;Yu, Ji-Hyun;Kim, Jong-Seon;Ryu, Ho-Suk;Ahn, Hyo-Jun;Kim, Ik-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, engineering grade and high intensity reflective sheets were prepared with glass beads and their reflection performance and physical properties were investigated. The reflective sheets prepared by using glass beads are divided into enclosed or encapsulated lens type, depending on whether the glass beads are open in air or not. Because of an extra layer on the glass bead surface, the enclosed lens type reflective sheets show very little change in the properties by bad weather conditions, compared to encapsulated lens type reflective sheets. Optimization of the amount of glass beads on the surface was carried out, which determines the retroreflective properties. Enclosed and encapsulated lens type reflective sheets with various colors were prepared and their coefficients of retroreflection were determined. The encapsulated type reflective sheet with white color shows a coefficient of retroreflection of $210.4cd/1x{\cdot}m^2$, which is higher than the enclosed type ($74cd/1x{\cdot}m^2$). Effect of washing on the reflective property and adhesive power of the reflective sheets was investigated, and it is found that the number of glass beads decreased with washing and the aluminum layer deposited was damaged extensively in the encapsulated lens type reflective sheets.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Surface Roughness and Cariogenic Microbial Adhesion after Polishing of Smart Chromatic Technology-based Composite Resin (Smart Chromatic Technology 기반 복합 레진의 폴리싱 이후 표면 거칠기 및 우식원성 미생물 부착 )

  • Haesong Kim;Juhyun Lee;Haeni Kim;Howon Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.1
    • /
    • pp.65-74
    • /
    • 2023
  • This study compared the surface roughness and microbial adhesion characteristics of Omnichroma, a novel composite resin developed using "smart chromatic technology", with those of two other conventional composite resins with different filler compositions. A total of 144 specimens were fabricated using 3 types of composite resins: Omnichroma (nano-spherical), Filtek Z350XT (nanofill), and Tetric N-Ceram (nanohybrid) and, divided into 3 groups of 48. Finishing was performed using tungsten carbide burs. Specimens were then divided into 3 subgroups using different polishing methods: Control, SofLex, and PoGo. Surface roughness was analyzed quantitatively and qualitatively using an atomic force microscope and a scanning electron microscope. Microbial adhesion was assessed by culturing Streptococcus mutans on the specimens for 24 hours and then measuring colony-forming units attached to the upper surface. The surface roughness (Ra) of Omnichroma was 0.123 ㎛ after finishing, and it exhibited a smooth surface compared to the other resins. However, after polishing, there were no significant differences in the surface roughness between the three composite groups, regardless of the polishing methods. The surfaces of the Control subgroups were significantly rougher than those of the SofLex subgroups in all 3 composite groups. However, except for Tetric N-Ceram, there were no significant differences between the Control and PoGo subgroups in the other composite groups. Microbial adhesion assessment showed no significant differences between any of the 3 composite resin subgroups; however, Omnichroma exhibited higher microbial adhesion than the other two composites. No significant correlation was observed between surface roughness and microbial adhesion.