• Title/Summary/Keyword: Structural composites

Search Result 929, Processing Time 0.026 seconds

Fracture behavior of fly ash concrete containing silica fume

  • Zhang, Peng;Gao, Ji-Xiang;Dai, Xiao-Bing;Zhang, Tian-Hang;Wang, Juan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.261-275
    • /
    • 2016
  • Effect of silica fume on fresh properties, compressive strength at 28 days and fracture behavior of fly ash concrete composite were studied in this paper. Test results indicated that the fluidity and flowability of fly ash concrete composites decreased and fly ash concrete composite are more cohesive and appear to be sticky with the addition of silica fume. Addition of silica fume was very effective in improving the compressive strength at 28 days of fly ash concrete composite, and the compressive strength of fly ash concrete composite has a trend of increase with the increase of silica fume content. Results also indicated that all the fracture parameters of effective crack length, fracture toughness, fracture energy, the critical crack opening displacement and the maximum crack opening displacement of fly ash concrete composite decreased with the addition of silica fume. When the content of silica fume increased from 3% to 12%, these fracture parameters decreased gradually with the increase of silica fume content. Furthermore, silica fume had great effect on the relational curves of the three-point bending beam specimen. As the silica fume content increased from 3% to 12%, the areas surrounded by the three relational curves and the axes were becoming smaller and smaller, which indicated that the capability of concrete composite containing fly ash to resist crack propagation was becoming weaker and weaker.

Sonocatalytic Degradation of Rhodamine B in the Presence of TiO2 Nanoparticles by Loading WO3

  • Meng, Ze-Da;Sarkar, Sourav;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.6-12
    • /
    • 2014
  • In the present work, $WO_3$ and $WO_3-TiO_2$ were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of $WO_3-TiO_2$ sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the $WO_3-TiO_2$ composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a $WO_3$ coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing $TiO_2$ response to ultrasonic radiations. In case of the addition of $WO_3$ as new matter, the excited electrons from the $WO_3$ particles are quickly transferred to $TiO_2$ particle, as the conduction band of $WO_3$ is 0.74 eV which is -0.5 eV more than that of $TiO_2$. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of $TiO_2$ nanoparticles was improved by loading $WO_3$.

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF

A Study on Extinguishing Concentration of K2CO3-Zeolite Composites (K2CO3가 흡착된 합성제올라이트 구조체의 소화농도에 관한 연구)

  • Kim, Seung-Il;Shin, Chang-Sub
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.42-47
    • /
    • 2012
  • In the study, fire extinguishing concentration of $K_2CO_3$-Zeolite composite was measured. Zeolite composite is a porous adsorbent which has small particle size, low density and anti-catalytic effect. Scanning Electron Microscopy, X-Ray diffraction and thermal analysis were also conducted to investigate the structural properties of composite. The result showed that despite of weight ratio, the extinguishing concentration of the composite was lower than pure $K_2CO_3$. The extinguishing concentration of $K_2CO_3$-Zeolite composite which has weight ratio of 7 : 3 was 5.72 times lower than that of pure $K_2CO_3$ and 1.1 times lower than that of ABC powder. The SEM and XRD patterns showed that $K_2CO_3$ was adsorbed on the Zeolite properly, and through the thermal analysis, it was founded that the composite is more effective extinguishing agent than pure $K_2CO_3$.

Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60MPa

  • Chia, Kok-Seng;Liu, Xuemei;Liew, Jat-Yuen Richard;Zhang, Min-Hong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.635-652
    • /
    • 2014
  • Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 $kg/m^3$ and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (${\geq}$ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

Influence of Silane Coupling Agent on Retraction Behaviors of NR Vulcanizates Reinforced with Carbon Black and Clay (실란 커플링제가 카본블랙과 점토로 보강된 천연 고무 가황물의 회복 특성에 미치는 영향)

  • Choi, Sung-Seen;Park, Byung-Ho;Kim, Wan-Soo;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.112-118
    • /
    • 2005
  • Influence of a silane coupling agent on the reatraction behaviors of NR vulcanizates reinforced with carbon black and c lay was studied. Bis-(3-(triethoxysilyl)-propyl )-tetrasulfide (TESPT) was used as a silane coupling agent. The vulcanizates containing the silane coupling agent were, on the whole, recovered faster than those without the silane coupling agent. However, for the vulcanizate with the higher clay content at low temperature region (below $-12^{\circ}C$), the vulcanizate containing the silane coupling agent was recovered slower than that without the silane coupling agent. The recovery difference of the vulcanizates with and without silane coupling agent decreased with increase of clay content. The experimental results were explained with crosslink density, modulus, and bound rubber content.

Effect of Substituent of Chain Transfer agent in the Free Radical Polymerization (자유 라디칼 중합반응에서 사슬이동제의 치환기 효과)

  • Chung, I.
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.53-58
    • /
    • 2005
  • Carbon tetrachloride is very reactive chain transfer agent due to the resonance stability of the trichlorocarbon radicals after breaking of C-Cl bond. Effect of benzylic radical comparing to trichlorocarbon radicals in the chain tranrfer reactions was investigated. From the structural point of view, cumyl chloride is a good candidate because it has the C-Cl bond with benzylic radicals after displacement of C-Ci bond. The reactivity of free radical polymerization of styrene in the presence of cumyl chloride was compared with that of carbon tetrachloride by calculating chain transfer constants. Results show that the cumyl chloride acts as a stronger chain transfer agent than carbon tetrachloride. The calculated chain transfer constant of cumyl chloride shows higher value (0.0463) than that of carbon tetrachloride (0.0011) in the styrene polymerization. High reactivity of cumyl chloride comparing to that of carbon tetrachloride is probably due to the higher resonance stability or benzylic radical than that or trichlorocarbon radicals after breaking of C-Cl bond. Monte Carlo simulation method is applied for characterizing the validity of kinetic constants according to the ratio of chain transfer agent to monomer.

Strength Characterisation of Composite Securement Device in the Vehicle by FE Analysis (유한요소해석을 통한 차량내 복합재 휠체어 고정구의 구조 강도 특성 평가)

  • Ham, Seok-Woo;Yang, Dong-Gyu;Son, Seung-Neo;Eo, Hyo-Kyoung;Kim, Gyeong-Seok;Cheon, Seong S.
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.171-176
    • /
    • 2019
  • In this paper, the strength of the composite securement device was characterised by FE analysis. Preliminary frontal crash analysis for the vehicle, equipped with the conventional steel securement device, was carried out according to the ISO 10542 for special transportation to obtain loading data, which were applied to securement device during crash. The securement device consists of block, guide and rail and the weight fraction of rail was the highest among them, therefore, it is desirable to reduce weight of rail by applying carbon/epoxy composite. Also, it was found that 27% of lightweight effect was obtained by hybrid rail that bottom part was replaced by a composite compared to the conventional rail, i.e., made of SAPH 440, without sacrificing the structural strength.

Experimental and Numerical Study on the Structural Stiffness of Composite Rotor Blade (복합재 로터 블레이드의 구조 강성도에 대한 실험적/수치적 연구)

  • Jeon, Hyeon-Kyu;Jeon, Min-Hyeok;Kang, Min-Song;Kim, In-Gul;Park, Jae-Sang;Seok, Jin-Young
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.191-198
    • /
    • 2019
  • The basic mechanical properties of helicopter rotor blade are important parameters for the analysis of helicopter performance. However, it is difficult to estimate these properties because the most of rotor blades consist of various materials such as composite materials and metals, etc. In this paper, the bending/torsional stiffness for composite rotor blade of unmanned helicopter were evaluated through experimental and analytical studies. In finite element analysis, the bending/torsional stiffness were evaluated through the relationship of load-displacement and element stiffness matrix. The evaluated stiffness from the measured strains and displacements in bending and torsional test agreed well with the derived results of FEA.

Study on Rheological Characterization of Polyacrylonitrile/Dimethyl Sulfoxide Solution with Change of Storage Times and Temperatures (시간 및 온도변화에 따른 폴리아크릴로니트릴/디메틸술폭시드 중합체 용액의 유변학적 특성 연구)

  • Yang, Jae-Yeon;Lee, Byoung-Min;Kuk, Yun-Su;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • In this study, the structural and rheological characterizations of polyacrylonitrile(PAN)/dimethyl sulfoxide(DMSO) solutions for PAN fiber were investigated according to the change of storage times and temperatures. As a result, PAN/DMSO solutions exhibited a very characteristic rheological behavior with variation of temperature. The solutions showed an increase of complex viscosity and a decrease of loss tangent($tan{\delta}$) as temperature was increased over the temperature range of 40 and $70^{\circ}C$ and it could be seen that the viscosity rapidly increased at low frequency. These results indicated that the gel polymer and denser gel structure were formed due to the intermolecular hydrogen bonding of water in the polymer solution depending on the storage time.