• Title/Summary/Keyword: Structural composites

Search Result 942, Processing Time 0.027 seconds

Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup (전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석)

  • Kim Sung Wook;Han Sang Muk;Kang Su Tae;Kong Jeong Shick;Kang Jun Hyung;Jun Sang Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

Development Ultra Rapid Hardening Construction Materials on Cold Weather Environment Considering Curing Temperature (양생온도를 고려한 극한지용 초속경 건설재료 개발)

  • Cho, Hyun-Woo;Shin, Hyun-Seop;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weather. Recent studies are reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperature, which can be used as an alternative of severe cold weather concrete in arctic regions. This study developed the magnesia-phosphate composites that can be used in severe cold regions and suggested an appropriate mixture design from the experimental results.

Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application (그라우팅에 적합한 점성을 갖는 변형률 경화 시멘트 복합재료)

  • Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • This paper presents materials and processing technique to manufacture low viscous strain-hardening cementitious composite which is suitable for structures requiring low viscosity of materials. The micromechanics and fracture mechanics tools coupled with processing techniques were adopted to achieve low viscosity of composites as well as high tensile strain capacity. Optimal volume and length of fibers and interfacial properties between fibers and matrix for composites with tensile strength of 2~3MPa were determined on the basis of the micromechanical analysis and the steady-state cracking theory. Then six mixtures were determined and the experiment was carried out to evaluate the viscosity and uniaxial tensile performance of those. From the test results, it is verified that the strain-hardening cementitious composite with low viscosity suitable for grouting applications in fresh state as well as high ductility over 1.5% in hardened state can be feasible.

The Effect of Steel-Fiber Reinforcement on the Compressive Strength of Ultra High Performance Cementitious Composites(UHPCC) (초고성능 시멘트 복합체의 압축강도에 대한 강섬유 보강 효과)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.110-118
    • /
    • 2010
  • This research dealt with the effect of steel-fiber reinforcement on the compressive strength of ultra high performance cementitious composites (UHPCC) and compared with that in normal steel-fiber reinforced concrete(SFRC). With wide range of compressive strength of UHPCC, experiments on the fiber reinforcement effect confirmed that the compressive strength in UHPCC is also improved by adding fibers as in normal SFRC. The experimental results were compared with previous researches about reinforcement effect by adding fibers, which are limited within 100MPa compressive strength. The comparison revealed the linear relationship between $f'_{cf}-f'_c$ and RI regardless of the magnitude of compressive strength, from which a general equation to express the effect of fiber reinforcement, applicable to various SFRC's with wide range of compressive strength including UHPCC.

Flexural Behavior of Highly Ductile Cement Composites Mimicking Boundary Conditions of Shellfish Skin Layer (패류 껍질층의 경계면을 모방한 고연성 시멘트 복합재료의 휨 거동)

  • Kwon, Ki-Seong;Chun, Jae-Yeong;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.108-115
    • /
    • 2020
  • In this study, the flexural performance of Highly Ductile Cement Composites(HDCC) mimicking boundary conditions of shellfish skin layer was evaluated. To improve ductility by mimicking the boundary skin layer structure of shellfish, the method of stratification by charging between precast panels using HDCC and the method of distributing PE-mesh to the interface surface were applied. Evaluation of flexural performance of layered cement composite materials mimicking boundary conditions of shellfish skin layer resulted in increased ductility of all test specimens applied with stratified cross-section compared to typical bending test specimens. The layered method by inserting PE-mesh showed excellent ductility. This is most likely because the inserted PE-mesh made an interface for separating the layers while the HDCC pillars in the PE-mesh gave adhesion between layers.

Creating damage tolerant intersections in composite structures using tufting and 3D woven connectors

  • Clegg, Harry M.;Dell'Anno, Giuseppe;Partridge, Ivana K.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.145-156
    • /
    • 2019
  • As the industrial desire for a step change in productivity within the manufacture of composite structures increases, so does the interest in Through-Thickness Reinforcement technologies. As manufacturers look to increase the production rate, whilst reducing cost, Through-Thickness Reinforcement technologies represent valid methods to reinforce structural joints, as well as providing a potential alternative to mechanical fastening and bolting. The use of tufting promises to resolve the typically low delamination resistance, which is necessary when it comes to creating intersections within complex composite structures. Emerging methods include the use of 3D woven connectors, and orthogonally intersecting fibre packs, with the components secured by the selective insertion of microfasteners in the form of tufts. Intersections of this type are prevalent in aeronautical applications, as a typical connection to be found in aircraft wing structures, and their intersections with the composite skin and other structural elements. The common practice is to create back-to-back composite "L's", or to utilise a machined metallic connector, mechanically fastened to the remainder of the structure. 3D woven connectors and selective Through-Thickness Reinforcement promise to increase the ultimate load that the structure can bear, whilst reducing manufacturing complexity, increasing the load carrying capability and facilitating the automated production of parts of the composite structure. This paper provides an overview of the currently available methods for creating intersections within composite structures and compares them to alternatives involving the use of 3D woven connectors, and the application of selective Through-Thickness Reinforcement for enhanced damage tolerance. The use of tufts is investigated, and their effect on the load carrying ability of the structure is examined. The results of mechanical tests are presented for each of the methods described, and their failure characteristics examined.

Analysis of Piezoresistive Properties of Cement Composites with Fly Ash and Carbon Nanotubes Using Transformer Algorithm (트랜스포머 알고리즘을 활용한 탄소나노튜브와 플라이애시 혼입 시멘트 복합재료의 압저항 특성 분석)

  • Jonghyeok Kim;Jinho Bang;Haemin Jeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.415-421
    • /
    • 2023
  • In this study, the piezoresistive properties of cementitious composites enhanced with carbon nanotubes for improved electrical conductivity were analyzed using a deep learning-based transformer algorithm. Experimental execution was performed in parallel for acquisition of training data. Previous studies on mixture design, specimen fabrication, chemical composition analysis, and piezoresistive performance testing are also reviewed in this paper. Notably, specimens in which fly ash substituted 50% of the binder material were fabricated and evaluated in this study, in addition to carbon nanotube-infused specimens, thereby exploring the potential enhancement of piezoresistive characteristics in conductive cementitious materials. The experimental results showed more stable piezoresistive responses in specimens with fly-ash substituted binder. The transformer model was trained using 80% of the gathered data, with the remaining 20% employed for validation. The analytical outcomes were generally consistent with empirical measurements, yielding an average absolute error and root mean square error between 0.069 to 0.074 and 0.124 to 0.132, respectively.

Evaluation on Flexural Capacity of Reinforced Concrete Beams with Ultra-High Performance Cementitious Composites (UHPCC를 사용한 철근 콘크리트 보의 휨강도 평가)

  • Kang, Su-Tae;Park, Jung-Jun;Koh, Gyung-Taek;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.81-90
    • /
    • 2008
  • This paper concerns the flexural capacity of reinforced concrete beams with ultra-high performance cementitious composites(UHPCC). It was investigated if the existing equations to estimate the flexural capacity of reinforced fiberous concrete beams are applicable with the experiments including lightly reinforced concrete beams. The reinforcing effect when the steel fiber reinforced concrete was used in beams was also estimated. The results showed that the equation to predict the flexural capacity of reinforced steel fiber concrete by ACI 544 committee didn't have a good agreement with the test results and underestimated the flexural capacity in especially lightly reinforced beams with under 1.5% reinforcement ratio. the enhancement of flexural capacity was quite considerable in lightly reinforced beams when the steel fiber reinforced concrete was used. A equation to predict the reinforcing effect of steel fiber in reinforced steel fiber beams was developed. the equation was proposed as a function of both the characteristics of steel fiber and reinforcement ratio.

The Effect of Steel Fiber on the Compressive Strength of the High Strength Steel Fiber Reinforced Cementitious Composites (강섬유의 혼입이 고강도 강섬유 보강 시멘트 복합체의 압축강도에 미치는 영향)

  • Kang, Su-Tae;Kim, Sung-Wook;Park, Jung-Jun;Koh, Gyung-Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.101-109
    • /
    • 2008
  • Many researchers have reported that adding steel fiber to concrete improved its tensile and flexural strength significantly, but relatively few studies have been made on the compressive behavior of steel fiber-reinforced concrete. It is still less in case of high strength steel fiber-reinforced cementitious composites(SFRC). The main objective of this research is to examine the effect of adding steel fiber on the compressive strength of high strength SFRC using fiber reinforcing index(RI, $V_f(I_f/d_f)$). It was found from the study that compressive strength was noticeably increased in proportion to RI. In conclusion, the relationship between Reinforcing Index(RI) and compressive strength in case of high strength steel fiber-reinforced cementitious composites was suggested.

A Study on the Application of Composites to Pipe Support Clamps for the Light-weight LNGC (LNGC 경량화를 위한 파이프 지지용 클램프의 복합소재 적용 연구)

  • Bae, Kyong-Min;Yim, Yoon-Ji;Yoon, Sung-Won;Ha, Jong-Rok;Cho, Je-Hyoung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • In the shipbuilding and marine industry, as a technology for reducing the weight of parts to reduce energy and improve operational efficiency of ships is required, a method of applying fibers-reinforced composites which is high-strength lightweight materials, as part materials can be considered. In this study, the possibility of applying fibers-reinforced composites to the pipe support clamps was evaluated to reduce the weight of LNGC. The fibers-reinforced composites were manufactured using carbon fibers and glass fibers as reinforcing fibers. Through the computer simulation program, the properties of the reinforcing materials and the matrix materials of the composites were inversely calculated, and the performance prediction was performed according to the change in the properties of each fiber lamination pattern. In addition, the structural analysis of the clamps according to the thickness of the composites was performed through the finite element analysis program. As a result of the study, it was confirmed that attention is needed in selecting the thickness when applying the fibers-reinforced composites of the clamp for weight reduction. It is considered that it will be easy to change the shape of the structure and change the structure for weight reduction in future supplementary design.