• 제목/요약/키워드: Structural and Vibration Analysis

검색결과 2,194건 처리시간 0.03초

신개념 로터리 엔진의 개발 (I) - 개념과 이론적 성능 분석 - (Development of A New Concept Rotary Engine (I) - Concept and theoretical performance analysis -)

  • 오문근;이규승;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제28권1호
    • /
    • pp.27-34
    • /
    • 2003
  • Present combustion engines have reached almost at the limit of development due to the fundamental structural problems. This study was carried out to propose a new concept internal combustion engine which has great potential advantages to the conventional engines. Proposed new concept engine is a kind of rotary engine. A rotor is rotating concentrically in a cylinder which is divided into two partitioning valves. and it makes four compartments in the cylinder. The volumes of each of four compartments are changing continuously with the rotor movement, and performs the functions of intake, compression. expansion and exhaust simultaneously. The results of this study can be summarized as follows. 1. Expected theoretical thermal efficiency is 44.9 percent at the condition of 1000rpm and compression ratio of 8.0. which is almost the same as that of the conventional engines. i.e., piston and Wankel rotary engine. 2. The new concept engine has 2. working strokes in every revolution. Therefore. the new concept engine can reduce the specific weight and volume than four-stroke piston engine. 3. The torque variation is very small. therefore minimal noise and vibration are expectable. 4. The new concept engine can reduce mechanical energy loss than piston engine because neither crank mechanism nor eccentrical motion exists.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Yield displacement profiles of asymmetric structures for optimum torsional response

  • Georgoussis, George K.
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.233-257
    • /
    • 2013
  • Given the yield shear of a single-story inelastic structure with simple eccentricity, the problem of strength distribution among the resisting elements is investigated, with respect to minimize its torsional response during a ground motion. Making the hypothesis that the peak accelerations, of both modes of vibration, are determined from the inelastic acceleration spectrum, and assuming further that a peak response quantity is obtained by an appropriate combination rule (square root of sum of squares-SRSS or complete quadratic combination-CQC), the first aim of this study is to present an interaction relationship between the yield shear and the maximum torque that may be developed in such systems. It is shown that this torque may be developed, with equal probability, in both directions (clockwise and anticlockwise), but as it is not concurrent with the yield shear, a rational design should be based on a combination of the yield shear with a fraction of the peak torque. The second aim is to examine the response of such model structures under characteristic ground motions. These models provide a rather small peak rotation and code provisions that are based on such principles (NBCC-1995, UBC-1994, EAK-2000, NZS-1992) are superiors to EC8 (1993) and to systems with a stiffness proportional strength distribution.

Prediction of the dynamic properties in rubberized concrete

  • Habib, Ahed;Yildirim, Umut
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.185-197
    • /
    • 2021
  • Throughout the previous years, many efforts focused on incorporating non-biodegradable wastes as a partial replacement and sustainable alternative for natural aggregates in cement-based materials. Currently, rubberized concrete is considered one of the most important green concrete materials produced by replacing natural aggregates with rubber particles from old tires in a concrete mixture. The main benefits of this material, in addition to its importance in sustainability and waste management, comes from the ability of rubber to considerably damp vibrations, which, when used in reinforced concrete structures, can significantly enhance its energy dissipation and vibration behavior. Nowadays, the literature has many experimental findings that provide an interesting view of rubberized concrete's dynamic behavior. On the other hand, it still lacks research that collects, interprets, and numerically investigates these findings to provide some correlations and construct reliable prediction models for rubberized concrete's dynamic properties. Therefore, this study is intended to propose prediction approaches for the dynamic properties of rubberized concrete. As a part of the study, multiple linear regression and artificial neural networks will be used to create prediction models for dynamic modulus of elasticity, damping ratio, and natural frequency.

Wave propagation analysis of the ball in the handball's game

  • Yongyong Wang;Qixia Jia;Tingting Deng;Mostafa Habibi;Sanaa Al-Kikani;H. Elhosiny Ali
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.729-742
    • /
    • 2023
  • It is a recent attraction to the mechanical scientists to investigate state of wave propagation, buckling and vibration in the sport balls to observe the importance of different parameters on the performance of the players and the quality of game. Therefore, in the present study, we aim to investigate the wave propagation in handball game ball in term of mass of the ball and geometrical parameters wit incorporation of the viscoelastic effects of the ball material into account. In this regard, the ball is modeled using thick shell structure and classical elasticity models is utilized to obtain the equation of motion via Hamilton's principle. The displacement field of the ball model is obtained using first order shear deformation theory. The resultant equations are solved with the aid of generalized differential quadrature method. The results show that mass of the ball and viscoelastic coefficient have considerable influence on the state of wave propagation in the ball shell structure.

Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability

  • Aksoy, Cemalettin O.;Uyar, Guzin G.;Ozcelik, Yilmaz
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.809-828
    • /
    • 2016
  • In deep open pit mines, slope stability is very important. Particularly, increasing the depths increase the risks in mines having weak rock mass. Blasting operations in this type of open pits may have a negative impact on slope stability. Several or combination of methods can be used in order to enable better analysis in this type of deep open-pit mines. Numerical modeling is one of these options. Many complex problems can be integrated into numerical methods at the same time and analysis, solutions can be performed on a single model. Rock failure criterions and rock models are used in numerical modeling. Hoek-Brown and Mohr-Coulomb terms are the two most commonly used rock failure conditions. In this study, mine planning and discontinuity conditions of a lignite mine facing two big landslides previously, has been investigated. Moreover, the presence of some damage before starting the study was identified in surrounding structures. The primary research of this study is on slope study. In slope stability analysis, numerical modeling methods with Hoek-Brown and Mohr-Coulomb failure criterions were used separately. Preparing the input data to the numerical model, the outcomes of patented-blast vibration minimization method, developed by co-author was used. The analysis showed that, the model prepared by applying Hoek-Brown failure criterion, failed in the stage of 10. However, the model prepared by using Mohr-Coulomb failure criterion did not fail even in the stage 17. Examining the full research field, there has been ongoing production in this mine without any failure and damage to surface structures.

Wavelet-based automatic identification method of axle distribution information

  • Wang, Ning-Bo;Ren, Wei-Xin;Chen, Zhi-Wei
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.761-769
    • /
    • 2017
  • Accurately extracting the axle distribution information of a passing vehicle from bridge dynamic responses experiences a key and challenging step in non-pavement bridge weigh-in-motion (BWIM). In this article, the wavelet transformation is adopted and the wavelet coefficient curve is used as a substitute for dynamic response. The driving frequency is introduced and expanded to multi-axle vehicle, and the wavelet coefficient curve on specific scale corresponding to the driving frequency is confirmed to contain obvious axle information. On this basis, an automatic method for axle distribution information identification is proposed. The specific wavelet scale can be obtained through iterative computing, and the false peaks due to bridge vibration can be eliminated through cross-correlation analysis of the wavelet coefficients of two measure points. The integrand function that corresponds to the maximum value of the cross-correlation function is used to identify the peaks caused by axles. A numerical application of the proposed axle information identification method is carried out. Numerical results demonstrate that this method acquires precise axle information from the responses of an axle-insensitive structure (e.g., girder) and decreases the requirement of sensitivity structure of BWIM. Finally, an experimental study on a full-scale simply supported bridge is also conducted to verify the effectiveness of this method.

유연한 기구의 틈새관절 모델링 및 해석방법에 관한 연구 (Dynamic Modeling and Analysis of Flexible Mechanism With Joint Clearance)

  • 홍지수;김호룡
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3109-3117
    • /
    • 1994
  • To operate a flexible mechanism in high speed its weight must be reduced as far as the structural strength does not decrease too much, but a light-weighted mechanism causes undesirable elastodynamic responses deteriorating the system performance. Besides, clearance within the connections of mechanisms causes rapid wear, increased noise and vibration. Even if the problems described above must be considered in the initial design stage, there has been no effective design process which takes account of the correlation between dynamic characteristics of flexible mechanism and the clearance effect at the joint. In this study, the generalized elastodynamic governing equations which include dynamic characteristics and boundary conditions of flexible mechanism are derived by variational calculus and solved by using FFM theory. To take the clearance effect at joint into account a new dynamic model is presented and also the method of modified stiffness/damping matrix is proposed to activate the dynamic clearance model, which cooperates with the developed governing equation very easily. As the results of this study, the proposed method(modified stiffness/damping matrix) to calculate clearance effect was proved to be superior to the existing one(force reaction method) in solution convergency and calculation performance. Besides this method can be easily adopted to the complex shape joint without calculation of reaction force direction.

Fundamental period of infilled RC frame structures with vertical irregularity

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Foskolos, Filippos;Fotos, Alkis;Tsaris, Athanasios K.
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.663-674
    • /
    • 2017
  • The determination of the fundamental period of vibration of a structure is essential to earthquake design. Current codes provide formulas for the approximate estimation of the fundamental period of earthquake-resistant building systems. These formulas are dependent only on the height of the structure or number of storeys without taking into account the presence of infill walls into the structure, despite the fact that infill walls increase the stiffness and mass of the structure leading to significant changes in the fundamental period. Furthermore, such a formulation is overly conservative and unable to account for structures with geometric irregularities. In this study, which comprises the companion paper of previous published research by the authors, the effect of the vertical geometric irregularities on the fundamental periods of masonry infilled structures has been investigated, through a large set of infilled frame structure cases. Based on these results, an attempt to quantify the reduction of the fundamental period due to the vertical geometric irregularities has been made through a proposal of properly reduction factor.

수력댐 비상방류밸브의 선정조건에 관한 연구 (The Study of the Decision Criteria for the Urgency Released Valve in Hydraulic Dam)

  • 노형운;이갑수;박영무;김범석;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.613-616
    • /
    • 2005
  • In general, the hollow jet valve, the fixed cone valve had been used for the urgency released or maintenance of the flow rate. Nowadays, the butterfly valve, the gate valve are applied in economic performance and operation maintenance more than the hollow jet valve, the fixed cone valve. However, in the case of butterfly valve, it should be required the strict application standard to the cavitation coefficient because the structural axis and disk were situated in pipe channel and the occurring the shock problem by Karman Vortex. And, the judgment data for choice were slight lowdown in water supply and drainage facilities standard or Japanese penstock technology standard, various standard of KOWACO etc. Therefore. there were investigated the valve inside phenomenon (cavitation, disk chattering, vibration) by velocity of flow and the stability examination of body by high velocity of flow through flow scale model test using the numerical analysis and PIV to establish the applicable extensibility of the butterfly valve for the urgency released valve.

  • PDF