• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.033 seconds

Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete (콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2016
  • This study examined the effect of transverse reinforcement and compressive stress on the shear friction performance at the shear interface intersecting two structural elements with various concrete types. From the prepared 12 push-off test specimens, various characteristics at the interface were measured as follows: crack propagation, shear load-relative slip relationship, initial shear cracking strength, ultimate shear friction strength, and shear transfer capacity of transverse reinforcement. The configuration of transverse reinforcement and compressive strength of concrete insignificantly influenced the amount of relative slippage at the shear friction plane. With the increase of applied compressive stress, the shear friction capacity of concrete tended to increase proportionally, whereas the shear transfer capacity of transverse reinforcement decreased, which was insignificantly affected by the configuration type of transverse reinforcement. The empirical equations of AASHTO-LRFD and Mattock underestimate the shear friction strength of concrete, whereas Hwang and Yang model provides better reliability, indicating that the mean and standard deviation of the ratios between measured shear strengths and predictions are 1.02 and 0.23, respectively.

Study on the Physical Properties of the Artificial Lightweight Aggregate Recycled from the Dyestuff Sludge Treated Chemically With Ti and Fe Salt (Ti염 및 Fe염으로 화학처리된 염색공단 슬러지를 재활용한 인공경량골재의 물리적 특성에 관한 연구)

  • Choi, Jong-Oh;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • The paper investigates environmental hazards and characteristics of the artificial lightweight aggregate manufactured by using dyestuff sludge from dyeing industrial complex. The dyestuff sludge used in this study is chemically treated with Ti and Fe salt for the purpose of recycling. The artificial lightweight aggregate is manufactured through 3 step; 1) Selecting the optimum moisture content by evaluating plasticity from the mixing ratio of the clay and sludge, 2) shaping round type based on the optimum mixing ratio, 3) drying and Sintering process. Based on KS F 2534 "Lightweight Aggregate for Structural concrete", the particle size, fineness modulus, the density, absorption, unit volume weight, stability and environmental hazards of the manufactured lightweight aggregate are evaluated. Experimental results show that the particle size and fineness modulus is out of the range. However, it is observed that other physical properties are within criteria. In addition, it is confirmed that the problem of the particle size and fineness modulus could be solved in the manufacturing process.

Preparation of Co3O4/NF Anode for Lithium-ion Batteries

  • Tian, Shiyi;Li, Botao;Zhang, Bochao;Wang, Yang;Yang, Xu;Ye, Han;Xia, Zhijie;Zheng, Guoxu
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.384-391
    • /
    • 2020
  • Due to its characteristics of light weight, high energy density, good safety, long service life, no memory effect, and environmental friendliness, lithium-ion batteries (LIBs) are widely used in various portable electronic products. The capacity and performance of LIBs largely depend on the performance of electrode materials. Therefore, the development of better positive and negative materials is the focus of current research. The application of metal organic framework materials (MOFs) derivatives in energy storage has attracted much attention and research. Using MOFs as precursors, porous metal oxides and porous carbon materials with controllable structure can be obtained. In this paper, rod-shaped Co-MOF-74 was grown on Ni Foam (NF) by hydrothermal method, and then Co-MOF-74/NF precursor was heat-treated to obtain rodshaped Co3O4/NF. Ni Foam was skeleton structured, which effectively relieved. The change of internal stress changes and destroys the structural volume of the electrode material and reduces the capacity attenuation. Co3O4/NF composite material has a specific discharge capacity of up to 1858 mA h/g for the first time, and a reversible capacity of up to 902.4 mA h/g at a current density of 200 mA/g, and has excellent rate and impedance performance. The synthesis strategy reported in this article opens the way to design high-performance electrodes for energy storage and electrochemical catalysis.

Fabrication of Lightweight Sandwich Structural Components with Superplastic Forming/Diffusion Bonding Technology (초소성/확산접합 기술을 이용한 티타늄 샌드위치 경량구조물 제작)

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Yi, Yeong-Moo;Shin, Dong Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.778-782
    • /
    • 2007
  • In the present study, design and forming process of fabricating titianium lightweight components are developed with applicaton of superplastic forming and diffusion bonding technology. SPF/DB(Superplastic forming/Diffusion bonding) technology is one of the advanced technologies to reduce production cost and weight and currently applied to aircrafts and space launchers in foreign countries. The present study constructs an analysis model to predict superplastic forming behavior of titanium alloy, which is well known for its resistance to deform. The experimental results show the forming of titanium lightweight sandwich structure is successfully performed from 3 sheets of Ti-6Al-4V. The results demonstrate that the developed technology to process design of SPF/DB by the finite element method can be applied to various types of components.

A Study on Women's Underwear Structures by Ideal Beauty - Focused on the late period of 20th century - (이상미에 따른 여성 속옷 구성에 관한 연구(2) - 20세기 후기를 중심으로-)

  • 김지연;전혜정
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.5
    • /
    • pp.79-95
    • /
    • 2003
  • The purpose of this study is firstly to survey the social and cultural background of 20th century and women´s status, and to identify what the ideal body is like and what the elements of outer garment and underwear are and the techniques to incarnate the ideal beauty. Various papers are referenced for theoretical study and the elements and techniques of underwear are analyzed based on photographical materials. This paper concludes as follows. In 1960´s, ideal beauty was small bust, long legs, which showed extremely slim Mini-skirt look. Thinly or no padded brassiere were worn for small bust, and pants-style short panty girdles were popular as they used to wear pants frequently. Lycra replaced all the closures, bones, seams and gave freedom with light weight. In 1970´s, a natural human body without sex specific was in vogue. Therefore, the non-structural knits without a pad or lining or the shirts dress were widespread for a Natural look and the naturally molded brassiere or girdles were worn as the underwears. In 1980´s, the women with powerful muscle appear which emphasized liveliness and healthfulness. The body conscious represented by wide shoulder, plump breast, accented waist, small hips, and long legs has been embodied. Outer garments emphasized women power and healthy beauty with Power suit and Form-fitting style, and underwears made the breast plump with padded brassiere and emphasized waist and hips with waspie. In 1990´s, ideal beauty was slim body with big bust and the outer garments emphasized body line of women with Hourglass silhouette. Push-up bra which emphasizes the valley of breast and supports the breast upward and the control tights for slim waist, flat abdomen, small hips, and long and slim legs have been useful as underwears. Multi-functional micro-fiber has been ideal for sculpting women body.

Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade (10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구)

  • Kim, Soo-Hyun;Shin, Hyungki;Bang, Hyung-Joon
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • In this study, a structural optimal design of 10 MW composite blade was performed using bend-twist coupled(BTC) design concept. Bend-twist coupling of blade means the coupling behavior between the bending and torsional deflections due to the composite lamina with fiber angle biased from the blade longitudinal axis. This can potentially improve the overall performance of composite blade and reduce the dynamic loading. Parametric studies on layup angle, thickness and area of off-axis carbon UD were conducted to find the optimum coupling effect with weight reduction. Comparing the results of fatigue load analysis between conventional model and BTC applied model, the damage equivalent load(DEL) of blade root area were decreased about 3% in BTC model. To verify the BTC effect experimentally, a 1:29 scaled model was fabricated and the torsion at the tip under deflection behavior of blade stiffener model was measured by static load test.

Estimation about Local Strength using FE-Analysis for Steel Yacht (유한요소해석을 이용한 강선요트의 국부강도 평가)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.77-82
    • /
    • 2005
  • Previously sailing yachts or leisure yachts were mainly made from FRP(Fiber glass reinforced plastic) in the small shipbuilding, but recently there is a trend to replace it for steel or aluminum to substitute FRP for environmental friendly materials. Although It have to need a many checked item in case of hull girder strength and transverse strength normally evaluate base on calculation of class guideline so called direct calculation method. Otherwise. this method of initial structural design considered enough for safety margin on the structure. But, case of small craft must consider for evaluating local strength through rational method. In this paper, check the bow structure members for satisfying results base on allowable stress criterion of damaged bow structure by dynamic load due to slamming and bottom impact load due to pitching motion through finite element analysis. and investigate engine bed structure considering engine weight load and transverse wave load.

  • PDF

Estimation of Buckling and Ultimate Strength of a Perforated Plate under Thrust (면내압축하중을 받는 유공판의 좌굴 및 최종강도 평가에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.129-135
    • /
    • 2004
  • Plate has cutout inner bottom and girder and floor etc in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc. Because cutout's existence gnaws in this place, and, elastic budding strength by load rouses large effect in ultimate strength. Therefore, perforated plate elastic budding strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step if ship. Therefore, and, reasonable elastic budding strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method

  • PDF

Study on the Vibration Control of Footbridge by Using Tuned Mass Damper(TMD) (Tuned Mass Damper(TMD)를 이용한 보도교의 진동제어에 대한 연구)

  • 권영록;최광규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.9-15
    • /
    • 2003
  • This paper describes a vibration control by using tuned mass damper(i.e., TMD) for an existing footbridge. The footbridge is the simple steel box girder bridge with main span length of 47.7m. This bridge has light weight, low damping and the 1st bending frequency of 1.84㎐. Its frequency is close to a walking cycle, which is 2㎐. Therefore the uncomfortable resonant vibrations due to a pedestrian walking have occurred frequently. The vibration control by means of TMD for suppressing the pedestrian induced vibration was conducted. Taking into account economical benefits and the easiness of installation, a compact TMD installed within a handrail was designed. From field tests of the TMD, it was confirmed that the structural damping of the bridge via. the compact TMD was enhanced by 13 times and the resonant vibration due to pedestrian walking was suppressed.

Cellular Structural Change of Barley Seedling on Different Salt Concentration under Hydroponic Culture (보리 유묘의 염농도에 따른 세포의 형태반응)

  • 이석영;김충수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.4
    • /
    • pp.481-486
    • /
    • 1995
  • The salt stress at seedling stage of winter barley was examined in different concentrations of NaCl containing 1/2 Hoagland solution. Fresh weight of seedling at 30 days after seeding was highest at 25mM of NaCl concentration containing 1/2 Hoagland solution but if the NaCl concentration was more than 50mM it began to decrease seriously. Water content in plant was decreased according to increase of NaCl concentration in 1/2 Hoagland solution, so physiological mechanism of NaCl in barley was different from saline plant. Stoma number per cm$^2$ of first leaf was higher than that of control in case of stressed by NaCl but in that case the leaf length was decreased so the number of stoma per first leaf was slightly decreased. Chloroplast shape was not changed by 75mM of high NaCl contained 1/2 Hoagland solution but cell division at root growing point was inhibited by 75mM of NaCl. As the result of salt stress mitochondria was ruined in structure and irregular solid was found to be transfered from the cytoplasm to the cell wall in root growing point.

  • PDF