• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.038 seconds

Multi-Disciplinary Design Optimization of a Wing using Parametric Modeling (파라미터 모델링을 이용한 항공기 날개의 다분야 설계최적화)

  • Kim, Young-Sang;Lee, Na-Ri;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-237
    • /
    • 2008
  • In this research, a MDO(multi-disciplinary design optimization) framework, which integrates aerodynamic and structural analysis to design an aircraft wing, is constructed. Whole optimization process is automated by a parametric-modeling approach. A CFD mesh is generated automatically from parametric modeling of CATIA and Gridgen followed by automatic flow analysis using Fluent. Finite element mesh is generated automatically by parametric method of MSC.Patran PCL. Aerodynamic load is transferred to Finite element model by the volume spline method. RSM(Response Surface Method) is applied for optimization, which helps to achieve global optimum. As the design problem to test the current MDO framework, a wing weight minimization with constraints of lift-drag ratio and deflection of the wing is selected. Aspect ratio, taper ratio and sweepback angle are defined as design variables. The optimization result demonstrates the successful construction of the MDO framework.

Introduction of sand marble wastes in the composition of mortar

  • Hebhoub, H.;Belachia, M.;Djebien, R.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.491-498
    • /
    • 2014
  • During the past years, the protection of the environment has become a major concern out passing the state frontiers to reach a planetary dimension. Depository waste sites have become a serious problem in terms of their locations and costs. On the other hand, the construction industry has a leading place in terms of quantities of waste produced from the start to the end of each construction site, by the large amounts of raw materials used and their respective consequences on the environment. The recycling of quarry wastes products, of demolished concrete, bricks and large quantities of waste resulting from the transformation of marble blocks can provide ideal solutions and advantages for the preservation of the environment, to become a supplementary source of aggregates. The main purpose of this study is to show technically the possibility of recuperating the aggregates of marble wastes as a partial substitute or total in the mortars. The aggregates used in this study is a sand of marble wastes (excess loads of sand exposed to bad weather conditions) of the quarry derived from Fil-fila marble (Skikda, east of Algeria). To achieve this work, we have studied the effect of sand substitution of marble wastes in the mortar with rates of (25, 50, 75, 100%); comparing the results obtained with reference samples (0%), the properties when the samples are fresh, and the mechanical performances of mortars at solid state (loss and gain of weight, dimensional variations). The introduction of recycled sand in the mortars gives good results and can be used as granulates.

A Study on the Effect of Concrete Strength by Pozzolan and High-early Strength Cement (조강 및 포조란시멘트 의결경화촉진이 콘크리트 강도에 미치는 영향에 관한 연구)

  • 전현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.3
    • /
    • pp.2677-2684
    • /
    • 1972
  • This study was carried out to search for an effect on strengths of a pozzolan and a high-early strength cements due to accelerating the initial setting and a rate of strength development at early age, and to obtain the effects applicable for structural construction works safety in the cold winter weather. The results of the study were as follows: 1. The early strength of high-early strength cement was higher than an ordinary portland cement(Type I). 2. High-early strength cement had a characteristic suitable for construction works in the cold weather due to the rate of acceleration of the eary strength. 3. When using pozzolan cements, a weight proportion should be considered in mix design since the pozzolan cement has a lower specific gravity than other portland cements. 4. It was desirable for the pozzolan cement to shorten the storage period since particles of the pozzolan cement was so fine that it was likely to weathering.

  • PDF

Quality characterization of gamma-irradiated fresh oyster mushrooms (Pleurotus ostreatus) during low temperature storage

  • Akram, Kashif;Ahn, Jae-Jun;Kwon, Joong-Ho
    • Current Research on Agriculture and Life Sciences
    • /
    • v.30 no.1
    • /
    • pp.51-59
    • /
    • 2012
  • Fresh oyster mushrooms (Pleurotus ostreatus) were gamma-irradiated at 0, 1, 2, and 3 kGy. The effects on various quality attributes were determined during storage at $5{\pm}1^{\circ}C$. Color changes were more prominent in the cap region than the stem part. At the start of storage increase of Hunter's L-value (lightness) was observed in the caps of 2 and 3 kGy-irradiated samples. The L-value was higher in the all irradiated samples during storage. The trend was different in the case of stem region, where L-value decreased upon irradiation, but remained high throughout storage. The ${\alpha}$-value declined, whereas the b-value increased following irradiation. Irradiation showed a dose-dependent effect on the firmness, which was clearer during storage, but the samples irradiated at 1 kGy maintained an overall better texture than other irradiated samples. The weight loss was also higher in the all irradiated samples during storage. The samples irradiated at 1 kGy showed good physical appearance without any fungal attack at the end of storage; however color change in cap region was quite apparent. The ultra-structural drastic effect of irradiation was understandable using scanning electron microscopy. E-nose analysis demonstrated a clear change in the volatile profiles of all irradiated samples. Although the effect of irradiation on quality characteristics was quite clear but the all irradiated samples were free from fungal attack that was observed in the case of control sample.

  • PDF

Integration of in-situ load experiments and numerical modeling in a long-term bridge monitoring system on a newly-constructed widened section of freeway in Taiwan

  • Chiu, Yi-Tsung;Lin, Tzu-Kang;Hung, Hsiao-Hui;Sung, Yu-Chi;Chang, Kuo-Chun
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.1015-1039
    • /
    • 2014
  • The widening project on Freeway No.1 in Taiwan has a total length of roughly 14 kilometers, and includes three special bridges, namely a 216 m long-span bridge crossing the original freeway, an F-bent double decked bridge in a co-constructed section, and a steel and prestressed concrete composite bridge. This study employed in-situ monitoring in conjunction with numerical modeling to establish a real-time monitoring system for the three bridges. In order to determine the initial static and dynamic behavior of the real bridges, forced vibration experiments, in-situ static load experiments, and dynamic load experiments were first carried out on the newly-constructed bridges before they went into use. Structural models of the bridges were then established using the finite element method, and in-situ vehicle load weight, arrangement, and speed were taken into consideration when performing comparisons employing data obtained from experimental measurements. The results showed consistency between the analytical simulations and experimental data. After determining a bridge's initial state, the proposed in-situ monitoring system, which is employed in conjunction with the established finite element model, can be utilized to assess the safety of a bridge's members, providing useful reference information to bridge management agencies.

Preparation of Core-Shell Structured Iron Oxide/Graphene Composites for Supercapacitors Application (코어-쉘 구조의 산화철/그래핀 복합체 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.65-72
    • /
    • 2018
  • Core-shell structured $Fe_3O_4/graphene$ composites were synthesized by aerosol spray drying process from a colloidal mixture of graphene oxides and $Fe_3O_4$ nanoparticles. The structural and electrochemical performance of $Fe_3O_4/graphene$ were characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanometric discharge-charge method. Core-shell structured $Fe_3O_4/GR$ composites were synthesized in different mass ratios of $Fe_3O_4$ and graphene oxide. The composite particles were around $3{\mu}m$ in size. $Fe_3O_4$ nanoparticles were encapsulated with a graphene. Morphology of the $Fe_3O_4/graphene$ composite particles changed from a spherical ball having a relatively smooth surface to a porous crumpled paper ball as the content of GO increased in the composites. The $Fe_3O_4/GR$ composite fabricated at the weight ratio of 1:4 ($Fe_3O_4:GO$) exhibited higher specific capacitance($203F\;g^{-1}$) and electrical conductivity than as-fabricated $Fe_3O_4/GR$ composite.

Development of Designed Formula considering Buckling under Longitudinal and Transverse Axial Compressive Load (종횡방향 압축하중이 작용하는 유공판의 좌굴을 고려한 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Jun-Kyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • Plate that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimated strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.A code based on finite element method.

  • PDF

A study on the design for the road bike frame made by carbon fiber materials (나노탄소섬유소재(Carbon fiber)를 활용한 로드형 자전거에서의 프레임 디자인 개발에 관한 연구)

  • Kim, Ki-Tae;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.178-185
    • /
    • 2017
  • Carbon fiber frames are actively developed for developing carbon fiber frames as the material of the next generation of bicycle frames, and are currently being developed with carbon fiber frames, hardness, shock absorption, light intensity, and strength. The carbon fiber bike models require a premium, differentiated design concept, which is essential to the development of a conceptual and differentiated design, requiring the development of essential structural structures, safety and refinement, and more of their own identity. In this study, a personal and unified image was derived from the research of the needs of consumers and image analysis process and then in the practical design work, the road bike bicycle frame design was proposed targeting the frame on the basis of carbon fiber materials.

Development of PC Double Wall for Staircase Construction (계단실 공사를 위한 PC Double Wall 공법 개발)

  • Suh, Jung-Il;Park, Hong-Gun;Hwang, Hyeon-Jong;Im, Ju-Hyuk;Kim, Yong-Nam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.571-581
    • /
    • 2014
  • In the present study, hollow precast concrete wall (PC Double Wall) for staircase construction was developed. Comparing the conventional walls, the PC Double Wall can be reduced the lift weight using hollow core and improves the integrity between the PC members. The cross-section and re-bar details of the PC Double Wall were developed considering precast concrete manufacturing, constructability, and the structural safety. Particularly, a form system was developed to manufacture thin and hollow core PC wall efficiently. A mock-up test for a staircase using the PC Double wall was performed to verify the constructability and integrity of the PC walls. The test result verified that joint deformation and cracking did not occur as showing good constructability.

A Study of the Development of Apartment's Structural Cost Saving Checklist through the Case Research (사례분석을 통한 공동주택 골조공사의 원가절감 체크리스트 개발에 관한 연구)

  • Lee, Kyeong-Seob;Suh, Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.65-77
    • /
    • 2010
  • Our nation's housing construction is given much weight over 32% in 2007 and especially apartment is taking over 67%. If we put into construction environment consideration, we are having a trouble with price cap policy and the realestate recession due to the global economic crisis. So in order to get competitive power and supply of cheap apartment, the necessity of cost saving is increasing. This research collected the past constructed apartment project's cost saving examples which were influencing on the construction cost, quality and time. We analyzed collected cost saving datum and assorted these in compliance with classification system. By analysis of correlation among datum with exclusion and integration, we make a propose cost saving Checklist that will be a base data to give a chance to use in working level and other research.