• Title/Summary/Keyword: Structural Strength

Search Result 6,580, Processing Time 0.03 seconds

A new strength model for the high-performance fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • Steel fiber reinforced concrete is increasingly used day by day in various structural applications. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber content ranging from zero to1.5 percent by volume with an aspect ratio of 80 and silica fume replacement at 5%, 10% and 15%. The influence of steel fiber content in terms of fiber reinforcing index on the compressive strength of high-performance fiber reinforced concrete (HPFRC) with strength ranging from 45 85 MPa is presented. Based on the test results, equations are proposed using statistical methods to predict 28-day strength of HPFRC effecting the fiber addition in terms of fiber reinforcing index. A strength model proposed by modifying the mix design procedure, can utilize the optimum water content and efficiency factor of pozzolan. To examine the validity of the proposed strength model, the experimental results were compared with the values predicted by the model and the absolute variation obtained was within 5 percent.

Studies on the Evaluation Method of Strength Comparison for Application in Joint Separation Test Body to Structural Concrete (구조체 콘크리트에 접합분리 시험체의 적용을 위한 강도비교에 관한 실험적 연구)

  • Kim, Seong-Deok;Lee, Seon-Ho;Jung, Kwang-sik;Paik, Min-su;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.79-82
    • /
    • 2008
  • It has been reported that destruction test by core collection is the most reliable of the structural concrete strength in present building construction field. But it causes low efficiency by damage and cutting in structure due to the core collection. It also has some problems in repairing. Additionally in case of strength test with management specimen, different environment compared to the structure environment cause problems about estimation precise structure strength. Therefore, it is required to develop structure direct strength test that has test values and credibility above the ones obtained by core specimen collection strength test and seasonal specimen test to suggest a reasonable and practical management method of structural concrete.

  • PDF

Structural Strength Assessment of Simplified Mark III CS Plate (단순화된 Mark III 방열판의 구조 강도 평가에 관한 연구)

  • Jeong, Han-Koo;Yang, Young-Soon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.539-543
    • /
    • 2011
  • LNG cargo containment system (CCS) has the primary function of ensuring adequate thermal insulation with keeping natural gas below its boiling point. From the viewpoint of structural design, this LNG CCS can be treated as a laminated composite structure showing complex structural responses under the sloshing load which can be defined as a violent behavior of the liquid contents in cargo tanks due to external forced motions. As LNG CCS type, Mark III containment system from TGZ is considered in this paper and then its structural strength assessment is performed based on a simple higher-order shear deformation theory and maximum stress, maximum strain, Tsai-Wu failure criteria developed for laminated composite plates. The assessment is performed to the initial failure of the Mark III CS plate by investigating failure locations and loads.

  • PDF

Structural Strength Assessment of Forward Cargo Hold for Kamsarmax CSR Bulk Carrier (Kamsarmax급 CSR Bulk Carrier의 Forward Cargo Hold 구조적 특성 및 안정성 검증)

  • Hwang, Sang-Wook;Park, Jeong-Jun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.17-20
    • /
    • 2011
  • The International Association of Classification Societies (IACS) had developed the Common Structural Rules (CSR) for bulk carriers as per the needs noted above. ISO and IMO GBS (Goal-Based Standards) are now being developed in this regard. This study has been prepared to verity the strength of forward cargo hold of 82,000 DWT class bulk carriers. A cargo hold/tank 3-D FE model was established to assess the structural adequacy of the primary structural members with the loading conditions. Full breadth model was established for the analysis considering asymmetric nature of structural layout and loading conditions. To summarize this result of structural assessment based on IACS CRS for bulk carrier, it is benefit to design this kind of bulk carriers and to study the strength assessment for the similar type of bulk carriers.

  • PDF

Structural Performance of Column-Slab Connection in Flat Plate System Using High Strength Concrete (고강도 콘크리트를 사용한 플랫 플레이트 구조의 기둥·슬래브 접합부 구조성능)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.97-105
    • /
    • 2006
  • The reinforced concrete flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problem in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab connection. Since the use of high strength concrete recently has become in practice for reinforced concrete structures, it is highly desired to establish the structural design method for flat plate construction using high strength concrete. In this paper, interior column-slab connection constructed with high strength concrete were tested under lateral and gravity loads to evaluate their strength and behavior. The test parameters were slab reinforcement ratio and the gravity load levels.

Structural Cost Optimization Techniques for High-rise Buildings Frame Systems Using High-strength Steels (고강도강재를 사용한 건물골조방식 초고층건물의 구조비용 최적화)

  • Seo, Ji-Hyun;Kwon, Bong-Keun;Kim, Sang-Bum;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.53-63
    • /
    • 2009
  • Use of high-strength steel members in building of high-rise buildings and large scale structures is expected to increase the effectiveness of structural design by reducing the weight and cost of structures. So far, high-strength steel members have been used in a very limited way because it is hard to select the proper strengths of steel members in a systematic way with the consideration of the structural cost. In this paper, therefore, a structural optimization technique based on Genetic algorithm is developed for effective use of high-strength steel members in structural design of high-rise buildings with the form of building frame system. The stability and efficiency of the technique is evaluated by using to a 35-story building. As a result, a stable and reliable optimal solution was obtained with a difference of 2.63% between individual and mean optimal structural costs.

Development of Steel Pipe Splice Sleeve for High Strength Reinforcing Bar(SD500) and Estimation of its Structural Performance under Monotonic Loading (SD500 고강도 철근용 강관 스플라이스 슬리브 철근이음 개발 및 구조성능 평가)

  • Lee, Sang-Ho;Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.169-180
    • /
    • 2007
  • Among several splicing system of reinforcing bar, the grout-filled splice sleeve system has been applied widely. However, as the splice sleeve for high strength rebar as SD500 is not yet made in korea, the development of splice sleeve for high strength reinforcing bar are required as soon as possible. It is the purpose of this study to develop the steel pipe sleeve for high strength rebar as SD500 and estimate its structural performance by monotonic loading test. The experimental variables adopted in this study are the development length of rebars, types of sleeve etc. The results of this study showed that the developed steel pipe splice sleeve system for high strength reinforcing bar as SD500 retained the structural performance required in domestic, ACI and AIJ criteria. And it is considered that the study result presented in this paper can be helpful in developing reasonable design method of steel pipe splice sleeve system for high strength reinforcing bar as SD500.

An Experimental Study on Compressive Strength of Lightweight Concrete made of Polystyrene Foam Balls (Polystyrene Beads를 이용한 경량콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.155-160
    • /
    • 1999
  • Recently, the study on mix design of lightweight concrete using the polystyrene foam balls is put into practice from the viewpoint to grade up the quality of concrete and recyclable usage of industrial by products. Polystyrene aggregate concrete, PAC, can be used as structural concrete in low strength application. For instance, PAC could be used in the middle part of sandwich panel where stresses are generally low and in the case of grid-type reinforcement where it does not need high bond strength but little compressive strength to resist the pressure of transverse reinforcement. From this point of view, the authors discussed the influence of fluidity and compressive strength of concrete by the difference of the volume percentage of polystyrene foam balls and water cement ratio.

  • PDF

Soil structure interaction effects on strength reduction factors

  • Eser, Muberra;Aydemir, Cem;Ekiz, Lbrahim
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.365-378
    • /
    • 2012
  • In this study, strength reduction factors are investigated for SDOF systems with period range of 0.1-3.0 s with elastoplastic behavior considering soil structure interaction for 64 different earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for strength reduction factor of interacting system as a function of structural period of system (T), ductility ratio (${\mu}$) and period lengthening ratio (T/T). It is concluded that soil structure interaction reduces the strength reduction factors for soft soils, therefore, using the fixed-base strength reduction factors for interacting systems lead to non-conservative design forces.

Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns (고강도 콘크리트 기둥의 거동에 미치는 콘크리트 강도와 띠철근의 영향)

  • Lee, Young-Ho;Chung, Heon-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.245-253
    • /
    • 2002
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns using high-strength concrete. Thirty-six concrete columns with 20cm square cross-section were tested. Experimental parameters included the concrete strength, the distribution of longitudinal bars and the volumetric ratio, yield strength, spacing of lateral ties. From the experiments, we found that: 1) the increasing rate of the strength and ductility of concrete columns caused by confinement of lateral ties was decreasing, as the concrete strength increased. 2) The high volumetric ratio and the reduction of tie spacing had a tendency to enhance the strength and improve the ductility. 3) The high-strength concrete columns required high volumetric ratio of lateral ties to maintain the proper strength and ductility. It was observed that the current AIK design code to specify the maximum tie spacing of high-strength concrete columns led to the poor strength and ductility for seismic design.