• Title/Summary/Keyword: Structural Retrofit

Search Result 264, Processing Time 0.019 seconds

Experimental study and modeling of masonry-infilled concrete frames with and without CFRP jacketing

  • Huang, Chao-Hsun;Sung, Yu-Chi;Tsai, Chi-Hsin
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.449-467
    • /
    • 2006
  • Most existing concrete structures in Taiwan are considered nonductile due to insufficient transverse reinforcement and poor detailing of frame elements. Such features are fairly typical for buildings constructed prior to 1997, at which time the local building code was revised based on ACI 318-95. Among these structures, many contain perimeter or partition walls made of concrete or clay brick for architectural purposes. These walls, though treated as non-structural components in common design practice, could affect the structural behavior of the buildings during an earthquake. To study the behavior of such structures under seismic load, experiments were conducted on concrete frames of various configurations to show the force-deformation relationships, damage patterns, and other characteristics of the frames. For further interest, similar units with columns jacketed by carbon-fiber-reinforced-polymer (CFRP) were also tested to illustrate the effectiveness of this technique in the retrofit of concrete frames.

Development of the Expert System for Management on Slab Bridge Decks (슬래브교 상판의 전문가 시스템 개발)

  • Ahn, Young-Ki;Lee, Cheung-Bin;Yim, Jung-Soon;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.267-277
    • /
    • 2003
  • The purpose of this study makes a retrofit and rehabilitation practice trough the analysis and the improvement for the underlying problem of current retrofit and rehabilitation methods. Therefore, the deterioration process, the damage cause, the condition classification, the fatigue mechanism and the applied quantity of strengthening methods for slab bridge decks were analysed. Artificial neural networks are efficient computing techniqures that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a management on existing slab bridge decks from damage cause, damage type, and integrity assessment at the initial stsge is need. The training and testing of the network were based on a database of 36. Four different network models werw used to study the ability of the neural network to predict the desirable output of increasing degree of accuracy. The neural networks is trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterms were minimized. This generally occurred after about 5,000 cycles of training.

Retrofit of Artificially Perforated Shear Wall in Existing Structure (인위적인 개구부를 가지는 전단벽의 보강)

  • Kim, Hyun-Min;Choi, Chang-Sik;Choi, Youn-Cheul;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.51-61
    • /
    • 2007
  • A series of three shear wall specimens were tested under constant axial stress and reversed cyclic lateral loading to evaluate the capacity of seismic retrofit proposed for the shear wall with the opening induced by remodeling. One specimen was tested in the as-built condition and the others were retrofitted prior to testing. The retrofit involved the use of carbon fiber sheets and steel plates (thickness ; 3mm) over the entire face of the wall. Specimens were 1/2-scale representations of a one-story wall in a Korean apartment building that was built in 1980. The test results showed that failure mechanism of specimens governed by shear fracture and the strength of specimens was varied with according to the retrofitting strategies.

Seismic Performance Evaluation of Flat Plate Structures Retrofitted with Steel Plates and Braces (강판과 가새로 보강된 무량판 구조물의 내진 성능평가)

  • Shin, Woo-Seung;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.451-458
    • /
    • 2008
  • In this study 3- and 6-story flat plate structures designed only for gravity load are retrofitted with steel plates and braces and their seismic performances are evaluated to verify the effect of seismic retrofit. According to the analysis results obtained from nonlinear static and dynamic analyses both the strength and stiffness are significantly enhanced as a result of the seismic retrofit. Especially the effect of column jacketing could be enhanced significantly when slabs were reinforced to prevent premature punching shear failure. When buckling-restrained braces are used instead of conventional braces, the structures showed more ductile behavior, especially in the 3-story structure.

Evaluation of Seismic Safety in School Buildings Applying Artificial Seismic Waves in Earthquake Magnitude of Korea (한국형 중진지역의 인공지진파 생성을 통한 학교건물 내진안전성 평가)

  • Kim, Seung-Hyun;Park, Young-Binuk;Kang, Jun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This report describes the development and stability evaluation of a seismic retrofit method to evaluate the seismic performance of existing school buildings by analyzing the earthquake waveforms that occurred in Korea. Currently, Facilities for seismic retrofit designed for excessive reinforcement are being applied. To compensate for this, optimised the retrofit mothod suitable for domestic situation considering the characteristics of the seismic region, generated a Korean-style artificial seismic wave that meets the seismic design criteria, which is less frequent than other countries.

A Study on Seismic Fragility of PSC Bridge Considering Aging and Retrofit Effects (PSC 교량의 노후도 및 FRP 보강 효과를 고려한 지진취약도 분석)

  • An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.34-41
    • /
    • 2020
  • In recent years, magnitude and frequency of earthquakes have increased in Korea. Damage to a bridge, which is one of the main infrastructures, can directly lead to considerable loss of human lives. Therefore, engineers need to evaluate the seismic fragility of the structure and prepare for the possible seismic damage. In particular, the number of aging bridges over 30 years of service increases, and thus the seismic analysis and fragility requires accounting for the aging and retrofit effects on the bridge. In this study, the nonlinear static and dynamic analyses were performed to evaluate the effects of the aging and FRP retrofit on a PSC bridge. The aging and FRP retrofit were applied to piers that dominate the response of the bridge during earthquakes. The maximum displacement of the bridge increased due to the aging of the pier but decreased when FRP retrofit applied to the aged pier. In addition, seismic fragility analysis was performed to evaluate the seismic behavior of the bridge combined with the seismic performance of the pier. Compared with the aged bridge, the FRP retrofit bridge showed a decrease in the seismic fragility in all levels of damage. The reduction of the seismic fragility in the FRP bridge was prominent as the value of PGA and level of damage increased.

Seismic Performance Evaluation According to Seismic Retrofit Techniques of Existing School Buildings (기존 학교건축물의 내진보강기법에 따른 내진성능평가)

  • Kang, Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • Reinforced concrete shear walls and X-type steel braces were applied in seismic retrofit techniques for seismic performance evaluation of school buildings constructed in accordance with standard design announced by the ordinance of the ministry of construction in 1980s. Seismic performance evaluation was based on FEMA 356 using response spectrum as elastic analysis and conducted to pushover analysis with nonlinear static analysis. The maximum displacement ratio between floors in 4th and 3rd floors of the existing school buildings was less than 1.0%, which was functioning level in FEMA 356. However, because plastic hinge occurs somewhat in structural members according to the results of pushover analysis, partial reinforcement will be required. X-direction of the maximum lateral displacement of reinforced concrete shear walls than X-type steel braces was 45% and 32% in 4th and 3rd floors of school buildings, and Y-direction was 18% and 17%, respectively.

Effect of Ferro-cement retrofit in the stiffened infill RC frame

  • Arulselvan, Suyamburaja;Sathiaseelan, P.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.511-518
    • /
    • 2017
  • This paper presents an experimental investigation on the contribution of RCC strip in the in-filled RC frames. In this research, two frames were tested to study the behavior of retrofitted RC frame under cyclic loading. In the two frame, one was three bay four storey R.C frame with central bay brick infill with RCC strip in-between brick layers and the other was retrofitted frame with same stiffened brick work. Effective rehabilitation is required some times to strengthened the RC frames. Ferrocement concrete strengthening was used to retrofit the frame after the frame was partially collapsed. The main effects of the frames were investigated in terms of displacement, stiffness, ductility and energy dissipation capacity. Diagonal cracks in the infill bays were entirely eliminated by introducing two monolithic RCC strips. Thus more stability of the frame was obtained by providing RCC strips in the infill bays. Load carrying capacity of the frame was increased by enlarging the section in the retrofitted area.