DOI QR코드

DOI QR Code

A Study on Seismic Fragility of PSC Bridge Considering Aging and Retrofit Effects

PSC 교량의 노후도 및 FRP 보강 효과를 고려한 지진취약도 분석

  • 안효준 (인하대학교 토목공학과) ;
  • 이종한 (인하대학교 토목공학과)
  • Received : 2020.09.10
  • Accepted : 2020.10.29
  • Published : 2020.12.31

Abstract

In recent years, magnitude and frequency of earthquakes have increased in Korea. Damage to a bridge, which is one of the main infrastructures, can directly lead to considerable loss of human lives. Therefore, engineers need to evaluate the seismic fragility of the structure and prepare for the possible seismic damage. In particular, the number of aging bridges over 30 years of service increases, and thus the seismic analysis and fragility requires accounting for the aging and retrofit effects on the bridge. In this study, the nonlinear static and dynamic analyses were performed to evaluate the effects of the aging and FRP retrofit on a PSC bridge. The aging and FRP retrofit were applied to piers that dominate the response of the bridge during earthquakes. The maximum displacement of the bridge increased due to the aging of the pier but decreased when FRP retrofit applied to the aged pier. In addition, seismic fragility analysis was performed to evaluate the seismic behavior of the bridge combined with the seismic performance of the pier. Compared with the aged bridge, the FRP retrofit bridge showed a decrease in the seismic fragility in all levels of damage. The reduction of the seismic fragility in the FRP bridge was prominent as the value of PGA and level of damage increased.

최근 국내에서는 지진의 발생 빈도와 규모가 증가하고 있다. 이러한 상황속에서 대표적인 도로 구조물인 교량의 지진피해는 많은 인명피해로 직결될 수 있다. 따라서, 사전에 구조물의 지진취약도를 분석하여 피해를 대비하는 것이 필요하다. 특히 국내의 교량은 공용년수 30년 이상의 노후 교량이 증가하고 있어, 교량의 노후화와 보수보강을 고려한 지진해석과 취약도 분석 연구가 필요하다. 본 연구에서는 PSC 교량에 대해 노후화와 FRP 보강효과를 고려하여 비선형 정적 및 동적해석을 수행하였다. 노후화 및 FRP 보강은 지진응답에 지배적인 영향을 주는 교각에 적용하였다. 최대 변위는 노후도에 의해 증가되었지만, FRP 보강에 의한 교량의 변위를 감소시킬 수 있었다. 지진해석과 함께 교각의 성능점과 동적거동을 복합적으로 평가할 수 있는 지진취약도 해석을 수행하여 노후화 및 FRP 보강에 대한 효과를 분석하였다. FRP 보강 교량의 지진취약도는 노후 교량에 비해 모든 손상단계에서 감소하였으며, PGA와 손상손상수준이 높아질수록 감소정도가 뚜렷하였다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport (2020), 2020 Road Bridge and Tunnel Status Report, Sejong, South Korea.
  2. Mazzoni S, McKenna F, Scott MH, Fenves GL. (2006), OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center. University of California, Berkeley, Berkeley.
  3. Aquino, W., & Hawkins, N. M. (2007), Seismic retrofitting of corroded reinforced concrete columns using carbon composites. ACI Structural Journal, 104, 348-356.
  4. Berry, M. P., & Eberhard, M. O. (2007), Performance modeling strategies for modern reinforced concrete bridge columns (Technical report). Berkeley, CA: Pacific Earthquake Engineering Research Center, University of California.
  5. Nguyen, Y. (2013), Determining the capacity of deteriorated reinforced concrete bridge structures under seismic loading, Ph.D. dessertation, California, San Diego State University, Department of Civil Engineering.
  6. Priestley MJN, Seible F, Calvi GM. (1996), Seismic design and retrofit of bridges. John Wiley & Sons Inc., New York.
  7. Seible F, Priestley MJN, Hegemier GA, Innamorato D. (1997), Seismic retrofit of RC columns with continuous carbon fiber jackets. J. Compos. Constr. May; 1(2), 52-62. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(52)
  8. An H, Lee J-H, Shin S. (2020), Dynamic Response Evaluation of Bridges Considering Aspect Ratio of Pier in Near-Fault and Far-Fault Ground Motions, Applied Sciences, 10(17), 60-98.
  9. FEMA. (2000), State of the Art Report on Systems Performance of Steel Moment Frames subject to Earthquake Ground Shaking, FEMA 355C.
  10. Barbat, A. H., Pujades, L. G., & Lantada, N., (2008), Seismic damage evaluation in urban areas using the capacity spectrum method: Application to Barcelona, Soil Dynamics and Earthquake Engineering, 28(10-11), 851-865. https://doi.org/10.1016/j.soildyn.2007.10.006