• 제목/요약/키워드: Structural Problems

검색결과 3,135건 처리시간 0.03초

균열문제에 적용된 확장유한요소법 (The extended finite element method applied to crack problems)

  • 지광습
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.395-402
    • /
    • 2004
  • The extended finite element scheme applied to crack problems is reviewed in this paper. As the enrichments of the solution space and the basic formulation are discussed, several examples of the application of the method are given. The examples include a LEFM crack, a cohesive crack, multiple LEFH cracks and dynamic crack propagation problems. It is shown that the extended finite element method is one of the powerful tools to study crack problems.

  • PDF

S.Minuchin 의 구조적 가족치료이론의 한국적 재조명 (Korean Review on the S.Minuchin's Structural Family Therapy Theory)

  • 손정영;김순옥
    • 가정과삶의질연구
    • /
    • 제9권2호
    • /
    • pp.345-366
    • /
    • 1991
  • The concrete purpose of this study is to examine the possibility of applying S.Minuchin's structural family therapy theory to each clinical families so that it can solve efficiently the clinical problems Korean family. The test results are as follows: 1)The Results of Question I : Types of Korean family problems can be divide into six. Then the most frequent type of problem was marital problem. 2) The Results of Question II: Korean normal family showed rater difussed boundary and higher rate of wife dominant type than that of husband dominant type in aspect of boundary and power, and had low tendency toward alignment and neutral adjustment. 3)The Results of Quesion III; Amidst the clinical families, family structural traits of the families which have marital problems showed a clear boundary, the tendency toward alignment, and higher tate of husband dominant type than that of wife dominant type. And family structural traits of children problem family had the tendency of alignment and showed little wife-dominanted families in power. Finally, mother-in -law and daughter-in-law problemed family had several characters such as diffused boundary, the tendency of alignment and high adjustment. 4)The Results of Question IV : As a result of camparing problemed families with normal families in family structure, there was high adaptability of S.Minuchin's structural theory to the two family groups; the groups of marital problems and those of children problem.

  • PDF

Biologically inspired soft computing methods in structural mechanics and engineering

  • Ghaboussi, Jamshid
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.485-502
    • /
    • 2001
  • Modem soft computing methods, such as neural networks, evolutionary models and fuzzy logic, are mainly inspired by the problem solving strategies the biological systems use in nature. As such, the soft computing methods are fundamentally different from the conventional engineering problem solving methods, which are based on mathematics. In the author's opinion, these fundamental differences are the key to the full understanding of the soft computing methods and in the realization of their full potential in engineering applications. The main theme of this paper is to discuss the fundamental differences between the soft computing methods and the mathematically based conventional methods in engineering problems, and to explore the potential of soft computing methods in new ways of formulating and solving the otherwise intractable engineering problems. Inverse problems are identified as a class of particularly difficult engineering problems, and the special capabilities of the soft computing methods in inverse problems are discussed. Soft computing methods are especially suited for engineering design, which can be considered as a special class of inverse problems. Several examples from the research work of the author and his co-workers are presented and discussed to illustrate the main points raised in this paper.

유전자 알고리즘(GA)을 이용한 구조물의 동적해석 및 최적화 (Structural Dynamic Optimization Using a Genetic Algorithm(GA))

  • 이영우;성활경
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.93-99
    • /
    • 2000
  • In many dynamic structural optimization problems, the goal is to reduce the total weight of the structure without causing the resonance. Up to now, gradient informations(i.e., design sensitivity) have been used to achieve the goal. For some class of dynamic problems, especially coalescent eigenvalue Problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique fur structural dynamic modification using a mode modification method with Genetic Algorithm(GA). In GA formulation, fitness is defined based on penalty function approach. Design variables are iteratively improved by using genetic algorithm. Two numerical examples are shown, (ⅰ) a cantilevered plate, and (ⅱ) H-shaped structure. The results demonstrate that the proposed method is highly efficient.

  • PDF

A two-level parallel algorithm for material nonlinearity problems

  • Lee, Jeeho;Kim, Min Seok
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.405-416
    • /
    • 2011
  • An efficient two-level domain decomposition parallel algorithm is suggested to solve large-DOF structural problems with nonlinear material models generating unsymmetric tangent matrices, such as a group of plastic-damage material models. The parallel version of the stabilized bi-conjugate gradient method is developed to solve unsymmetric coarse problems iteratively. In the present approach the coarse DOF system is solved parallelly on each processor rather than the whole system equation to minimize the data communication between processors, which is appropriate to maintain the computing performance on a non-supercomputer level cluster system. The performance test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF nonlinear structural problems on a cluster system.

구조적 설계문제 최적화를 위한 혼합유전알고리즘 (Hybrid Genetic Algorithm for Optimizing Structural Design Problems)

  • 윤영수;이상용
    • 한국경영과학회지
    • /
    • 제23권3호
    • /
    • pp.1-15
    • /
    • 1998
  • Genetic algorithms(GAs) are suited for solving structural design problems, since they handle the design variables efficiently. This ability of GAs considers then as a good choice for optimization problems. Nevertheless, there are many situations that the conventional genetic algorithms do not perform particularly well, and so various methods of hybridization have been proposed. Thus. this paper develops a hybrid genetic algorithm(HGA) to incorporate a local convergence method and precision search method around optimum in the genetic algorithms. In case study. it is showed that HGA is able consistently to provide efficient, fine quality solutions and provide a significant capability for solving structural design problems.

  • PDF

Detection of nonlinear structural behavior using time-frequency and multivariate analysis

  • Prawin, J.;Rao, A. Rama Mohan
    • Smart Structures and Systems
    • /
    • 제22권6호
    • /
    • pp.711-725
    • /
    • 2018
  • Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Hence, it is highly desirable to detect and characterize the nonlinearity present in the system in order to assess the true behaviour of the structural system. Further, these identified nonlinear features can be effectively used for damage diagnosis during structural health monitoring. In this paper, we focus on the detection of the nonlinearity present in the system by confining our discussion to only a few selective time-frequency analysis and multivariate analysis based techniques. Both damage induced nonlinearity and inherent structural nonlinearity in healthy systems are considered. The strengths and weakness of various techniques for nonlinear detection are investigated through numerically simulated two different classes of nonlinear problems. These numerical results are complemented with the experimental data to demonstrate its suitability to the practical problems.

타부탐색을 이용한 이산설계공간에서의 구조물의 최적설계 (Structural Optimization Using Tabu Search in Discrete Design Space)

  • 이권희;주원식
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.798-806
    • /
    • 2003
  • Structural optimization has been carried out in continuous or discrete design space. Methods for continuous design have been well developed though they are finding the local optima. On the contrary, the existing methods for discrete design are extremely expensive in computational cost or not robust. In this research, an algorithm using tabu search is developed fur the discrete structural designs. The tabu list and the neighbor function of the Tabu concepts are introduced to the algorithm. It defines the number of steps, the maximum number for random searches and the stop criteria. A tabu search is known as the heuristic approach while genetic algorithm and simulated annealing algorithm are attributed to the stochastic approach. It is shown that an algorithm using the tabu search with random moves has an advantage of discrete design. Furthermore, the suggested method finds the reliable optimum for the discrete design problems. The existing tabu search methods are reviewed. Subsequently, the suggested method is explained. The mathematical problems and structural design problems are investigated to show the validity of the proposed method. The results of the structural designs are compared with those from a genetic algorithm and an orthogonal array design.

경계요소법과 유한요소법에 의한 흡음판의 소음저감에 관한 다영역 연성해석 (Multi-Region Structural-Acoustic Coupling Analysis on Noise Reduction of Layered Structures using Finite Element and Boundary Element Technique)

  • 주현돈;서원진;이시복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.309-313
    • /
    • 2000
  • A structural-acoustic coupling problem involving fluid in a cavity divided with flexible walls and porous materials is investigated in this paper. In many practical problems, the use of finite elements to discretize the fluid region leads to large stiffness and mass matrices. But, since the acoustic boundary element discretization requires to put elements only on the surface of structure, the size of matrices is reduced considerably. Here, we developed a numerical analysis program for the structural-acoustic coupling problems of the multi-region cavity, using boundary elements for the fluid regions and finite elements for the structure. By considering sound transmission through layered systems placed in a cavity, the accuracy of the coupled acoustical-structural finite element model has been verified by comparing its transmission loss predictions with analytical sloutions. Example problems are included to investigate the characteristics of the multi-region structural-acoustic coupling system with porous material.

  • PDF

구조최적설계시 직접법 및 근사법 알고리즘의 성능 비교에 관한 연구 (A Study on the Comparison of Performances Between Direct Method and Approximation Method in Structural Optimization)

  • 박영선;이상헌;박경진
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.313-322
    • /
    • 1994
  • Structural optimization has been developed by two methods. One is the direct method which applies the Nonlinear Programming (NLP) algorithm directly to the structural optimization problem. This method is known to be very excellent mathematically. However, it is very expensive for large-scale problems due to the one-dimensional line search. The other method is the approximation method which utilizes the engineering senses very well. The original problem is approximated to a simple problem and an NLP algorithm is adopted for solving the approximated problems. Practical solutions are obtained with low cost by this method. The two methods are compared through standard structural optimization problems. The Finite element method with truss and beam elements is used for the structural and sensitivity analyses. The results are analyzed based on the convergence performances, the number is function calculations, the quality of the cost functions, and etc. The applications of both methods are also discussed.